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Chapter 1

Introduction

Both the practitioner using computational 
uid dynamics in engineering design

calculations and the scientist grappling with gaps in the theoretical foundations

are aware that much remains to be done before the subject can be put on

�rm ground. This is particularly true in the theory and numerical analysis

of hyperbolic conservation laws, vital in gas dynamics and compressible 
uid

mechanics and a fundamental component in the resolution of solutions of the

Navier-Stokes equations for compressible 
ow. There the numerical solution of

hyperbolic systems is confronted with a list of major di�culties and questions

that have been under study for many years.

These include classical problems of numerically resolving shocks and dis-

continuities, characteristic of solutions of hyperbolic problems, while simulta-

neously producing high-order, non-oscillatory results near shocks and elsewhere

in the solution domain. Moreover, the basic issue of quality of numerical solu-

tions is fundamentally important: how accurate are the numerical simulations

and how does one obtain the most accurate results for a �xed computational re-

source? These questions lie at the core of modern adaptive methods that aim

to control the error in the computed solution and to optimize the computa-

tional process. In addition, methodologies that attempt to address these issues

1
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cannot be limited to one-dimensional cases; they must be extendable to prob-

lems involving realistic geometries, boundary and initial conditions in arbitrary

domains in two- and three-dimensions. Finally, there is the issue of computa-

tional e�ciency. Modern numerical schemes for large-scale applications should

be readily parallelizable for implementation in emerging multi-processor archi-

tectures.

This dissertation addresses these issues for model classes of hyperbolic

conservation laws. The basic approach developed in this work employs a new

family of adaptive, hp-version, �nite element methods based on a special dis-

continuous Galerkin formulation for hyperbolic problems. The discontinuous

Galerkin formulation admits high-order local approximations on domains of

quite general geometry, while providing a natural framework for �nite element

approximations and for theoretical developments. The use of hp-versions of the

�nite element method makes possible exponentially convergent schemes with

very high accuracies in certain cases; the use of adaptive hp-schemes allows

h-re�nement in regions of low regularity and p-enrichment to deliver high ac-

curacy, while keeping problem sizes manageable and dramatically smaller than

many conventional approaches. The use of discontinuous Galerkin methods is

uncommon in applications, but the methods rest on a reasonable mathemat-

ical basis for low-order cases and has local approximation features that can

be exploited to produce very e�cient schemes, especially in a parallel, multi-

processor environment.

The place of this work is to �rst and primarily focus on a model class

of linear hyperbolic conservation laws for which concrete mathematical re-

sults, methodologies, error estimates, convergence criteria, and parallel adap-
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tive strategies can be developed, and to then brie
y explore some extensions to

more general cases. Next, we provide preliminaries to the study and a review

of some aspects of the theory of hyperbolic conservation laws. We also provide

a review of relevant literature on this subject and on the numerical analysis of

these types of problems.

1.1 Some Mathematical Preliminaries

The broad aim of this work is to lay mathematical foundations and to develop

new numerical schemes which will aid in understanding and solving general

systems of hyperbolic conservation laws of the form

U;t + Fi(U);xi = S;x = (x1; x2) 2 
 � <d; t > 0 (1:1)

where U is a vector consisting of m components to be conserved in 
 and

S is a vector-valued source term. The 
ux vectors Fi; i = 1; � � � ; d are, in

general, a nonlinear function of U. The subscript t denotes di�erentiation with

respect to time and the subscripts xi denote di�erentiation with respect to the

spatial coordinate xi, and in which summation convention for repeated indices

is employed. Alternatively, (1.1) can be written in the quasi-linear form

U;t +Ai(U)U;xi = S (1:2)

where the 
ux Jacobian matrices

Ai =
@Fi

@U
(1:3)

have real eigenvalues. To complete the initial-boundary value problem, one

must specify initial conditions of the form

U(x; 0) = U0(x) (1:4)
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and appropriate boundary conditions.

Most of this investigation focuses on a simpler and restricted class of

hyperbolic problems for which concrete results can be obtained and for which it

is possible to treat some speci�c numerical issues in more detail than is possible

for the general case.

The �rst di�culty encountered in developing numerical methods for

hyperbolic systems of conservation laws in multiple space dimensions is the

absence of a general mathematical theory. Hence, many popular numerical

schemes for multi-dimensional systems are based on existence and uniqueness

results for scalar hyperbolic conservation laws of the form

u;t + f i(u);xi = 0 ; x 2 <d; t > 0 (1.5)

u(x; 0) = u0(x)

where the 
uxes f i; i = 1; � � � ; d are Lipschitz continuous functions of u and

the initial data u0 2 L1(<d) \ L1(<d) have compact support.

Historically, existence and uniqueness proofs have relied upon compact-

ness arguments for sequences of solutions generated by the vanishing viscos-

ity method, see Kru�zkov [32], or low-order �nite di�erence approximations,

see Glimm [22] and Crandall and Majda [15]. More recently, uniqueness re-

sults have been generalized using the concept of measure-valued solutions (see

DiPerna [20]) providing a new tool for convergence proofs for a variety of numer-

ical methods [14], [31]. Here some well-known results for scalar conservation

laws are summarized.

Solutions to (1.5) develop discontinuities in �nite time, even if the initial

data is smooth. Thus, (1.5) must be interpreted in the sense of distributions,



5

or equivalently, weak solutions are sought which satisfy

Z T

0

Z
<d

 
u�t +

dX
i=1

f i(u)�xi

!
dx dt+

Z
<d
u0 � dx = 0 (1:6)

for all test functions � 2 C1(<d � [0; T )) with compact support. There are an

in�nite number of weak solutions satisfying (1.6) for given initial data u0; how-

ever, the physically relevant solution satis�es an additional constraint, namely

an entropy condition. The entropy condition takes into account the fact that

physical processes are dissipative and that (1.5) models a physical process in

the limit as the dissipation tends to zero. This solution, the so-called entropy

solution, satis�es

Z T

0

Z
<d
ju� cj�t + sign(u� c)(f i(u)� f i(c))�xidx dt � 0 (1:7)

for all nonnegative test functions � 2 C1
0 (<d � [0; T )) and all c 2 <.

The following lemma summarizes some basic properties of solutions to

(1.5) or (1.6).

Lemma 1 (Crandall and Majda [15]) For every choice of initial data u0 2
L1(<d)\L1(<d), there exists a unique entropy solution u 2 C([0;1) : L1(<d))
of (1.5) with u(x; 0) = u0(x). Denoting u(x; t) by E(t)u0, we have

(i) jjE(t)u0 �E(t)v0jjL1(<d) � jju0 � v0jjL1(<d)

(ii) u0 � v0 a.e. ! E(t)u0 � E(t)v0 a.e.

(iii) u0 2 [a; b] a.e. ! E(t)u0 2 [a; b] a.e.

(iv) If u0 2 BV (<d); t! E(t)u0 is Lipschitz continuous into L1(<d)
and jjE(t)u0jjBV (<d) � jju0jjBV (<d)
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The functions in the space BV (<d) � L1
loc(<d) have bounded variation

and distributional derivatives that are locally measures. The variation of a

function v 2 BV (<d) for d = 2 is de�ned as

jjvjjBV (<2) = sup
�2<nf0g

Z
<2
jv(x+ �; y)� v(x; y)j

j�j dx dy

+ sup
�2<nf0g

Z
<2
jv(x; y+ �)� v(x; y)j

j�j dx dy

These results are typical of the mathematical theory that has in
uenced

the development of many numerical schemes over the past decade: they apply

to unbounded domains, scalar-valued solutions, and characterize the solutions

as among function classes of low regularity. Our goal is to consider problems

in bounded domains with speci�c in
ow conditions, since these are the types

of problems encountered in realistic application of the theory. Moreover, when

there exist portions of the domain over which the solution is smooth, we wish to

take advantage of that smoothness by exploiting higher-order methods which

can exhibit high local accuracies. These types of considerations suggest discon-

tinuous Galerkin methods as an approach worthy of study and set the present

work apart from most conventional approaches to this subject.

1.2 Higher-Order Methods

A major challenge in designing higher-order methods for the numerical solu-

tion of hyperbolic conservation laws over the last decade has been to prevent

nonphysical oscillations from occuring near discontinuities without destroying

accuracy in smooth regions. These oscillations can pollute the solution glob-

ally and can lead to numerical instabilities not revealed by traditional stability
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analysis applied to a linearized equation. One should also note that the notion

of the "order" of a numerical scheme is not always de�ned consistently in the

literature. In classical �nite-di�erence literature, the order of a scheme refers

to the order of the truncation error in the time-step �t, and this may be quite

di�erent from the actual order of the error in, say, the L2-norm. In discussing

the order of various schemes in the literature on this subject, we generally refer

to the truncation error, since this use is prevelent, albeit imprecise. In subse-

quent Chapters, we develop error estimates in well-de�ned norms so that the

question of order of accuracy is clearly resolved.

The classical remedy for controlling oscillations, namely, regularizing

the conservation law by adding an "arti�cial" di�usive term (e.g. [28], [34],

and [34]), is easily applied to methods of arbitrarily high order [18], [49]. Un-

fortunately, this approach is not completely e�ective at eliminating oscillations

and may destroy accuracy in smooth regions. The most successful methods

for solving realistic problems are typically second-order accurate and attack

oscillations directly by simply preventing them from occuring. These schemes,

such as those based on the Flux-Corrected Transport (FCT) ideas of Boris

and Book [8], or the Total Variation Diminishing (TVD) ideas of Harten [25],

and the monotone reconstruction ideas of Van Leer [51], use a form of 
ux

or solution limiting to enforce the discrete counterpart of properties (iii) or

(iv) in Lemma 1 onto the approximate solution. Unfortunately, this limiting is

based on one-dimensional concepts which are heuristically extended to multi-

dimensional systems. Often these extensions result in a loss of accuracy in

smooth regions [24].

Higher-order accurate (greater than second-order) methods for discon-
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tinuous solutions of hyperbolic conservation laws are primarily in a develop-

mental stage. Spectral methods have been combined with FCT ideas [10] and

�ltering methods [50] to control oscillations, but much of the work is for one

space dimension and lacks the geometric 
exibilty needed for adaptivity. Es-

sentially NonOscillatory (ENO) schemes introduced by Harten, Enquist, Os-

her and Chakravarthy [26] produce high-order approximations for hyperbolic

problems by using high-order polynomial interpolation of solution mean values.

Oscillations are controlled by using a solution dependent stencil which avoids

interpolation across discontinuities. To date, a full theoretical basis for these

schemes is not available beyond one dimensional cases.

Cockburn, Shu, and collaborators [12], [13] developed one of the �rst

high-order numerical schemes for hyperbolic conservation laws in two space

dimensions. This work employed Runge-Kutta schemes for advancing the so-

lution in time and an elaborate projection strategy that guaranteed that the

total variation of the solutions remained bounded throughout the evolution pro-

cess. Their TVB (total variation bounded) schemes thus generalized the TVD

schemes of Harten and others. Goodman and LeVeque [24] showed that TVD

schemes are at most �rst-order accurate in dimensions greater than one and

hence, are not justi�ed mathematically in two- or more dimensions. The TVB

schemes, however, provide a basis for the development of high-order schemes

on spatial domains of dimensions two and three. The Cockburn and Shu TVB

methods are constructed using discontinuous Galerkin methods and, thus, ex-

tend these methods to nonlinear conservation laws. However, the emphasis of

their work was in treating the discontinuous Galerkin method as a higher-order

�nite volumemethod, that is, focusing on the accuracy of solution mean values.
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Moreover, these TVB schemes, thusfar, have delivered only second-order meth-

ods on non-cartesian meshes in multiple space dimensions. This work inspired

some of the developments discussed in Chapter 7.

Among the earliest work on �nite element approximations of hyperbolic

problems is the classical paper of Lesaint and Raviart [33] which introduced

the discontinuous Galerkin method for linear scalar hyperbolic problems. This

work contained the �rst a priori error estimates for h-version methods based

on elements of arbitrary, but uniform, polynomial order p. In their work, sub-

optimal error estimates, with a loss in global accuracy of O(h) in the L2-norm,

were obtained.

A detailed analysis of discontinuous Galerkin methods for h-version

methods was contributed by Johnson and his collaborators [29], [30]. There

quasi-optimal a priori estimates showed a global accuracy of O(hp+
1
2 ) in mesh-

dependent norms. This work provided a general approach to the mathematical

analysis of these methods that proved to be invaluable in the present work.

Among the results established in the present study are developments of new

a priori and a posteriori error estimates for hp-version discontinuous Galerkin

�nite element approximations of linear, scalar hyperbolic conservation laws.

Thus, this study extends and generalizes the results of Johnson and others to

p- and hp-version �nite elements and provides, for the �rst time, a posteri-

ori error estimates for such problems using extensions of the element residual

method (see [1], [2]).

One reason for renewed interest in discontinuous Galerkin methods is

the advent of parallel computations. The decomposition of large-scale prob-

lems into several computational components that can be handled simultane-
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ously by multiple processors makes possible signi�cant improvements in the

e�ciency with which large hyperbolic systems can be resolved. Some progress

in parallelizations of high-order schemes for hyperbolic problems in one- and

two-dimensions has been made by Biswas, Devine, and Flaherty [7]. In their

work, extensions of the ideas of Cockburn and Shu [12], [13] are presented

which make use of higher moments of the solutions over an element in de�ning

a broader class of projections for imposing TVB behavior on the entire solu-

tion in an element and not just the mean values. At present, however, moment

limiting is restricted to cartesian grids. A component of the work reported

here is concerned with parallel computing methods for hp-�nite element ap-

proximations of scalar conservation laws. The fact that discontinuous Galerkin

methods involve very localized approximations over individual elements makes

our techniques particularly amenable to element-by-element decomposition and

parallel processing.

To a great extent, the present work represents a signi�cant departure

from conventional methods for the numerical solution of hyperbolic problems.

Several fundamental issues are addressed: the use of discontinuous hp-methods,

to provide high-order local approximation to deliver high accuracy when possi-

ble but also allowing mesh re�nement to resolve irregularities in the solutions;

the development of a priori error estimates to establish proofs of convergence

and qualitative information on the performance of the method; the development

of a posteriori error estimates to monitor the performance of the calculation and

to estimate quality of the solution; the development of new adaptive strategies

to control error and optimize meshes; and the development of parallel comput-

ing strategies to exploit the local character of discontinuous approximations
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and to increase the speed with which solutions can be obtained. In addition

to these developments, applications to nonlinear conservation laws are also

presented.

1.3 A Posteriori Error Estimation and Adaptivity

The power of adaptivity to e�ciently improve solution accuracy was recognized

early on in the development of unstructured grid methods for hyperbolic conser-

vation laws. These h-adaptive methods, based on re�nement and dere�nement

of an initial mesh [35], [36], [16] or a complete remeshing of the domain [43],

continue to be the preference for realistic 
ow simulations. With an emphasis

on resolving certain features of the solution, many re�nement indicators have

been proposed which are based on some a priori knowledge of the solution

behavior associated with certain phenomena. Typically, these indicators are

loosely based on interpolation error estimates applied to key variables and can

be grossly in error. While this approach may provide some relative measure of

the local error in the solution, it does not in general provide a reliable estimate

of the actual error in the approximate solution.

While the bulk of previous work has concentrated on h-adaptive meth-

ods combined with low-order approximations, the e�ectiveness of p-adaptive

[7] and hp-adaptive [18] methods has been demonstrated for certain classes

of hyperbolic problems. As noted earlier, the present study extends existing

adaptive strategies to discontinuous approximations of hyperbolic conservation

laws.
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1.4 Scope

Following this introduction, a new formulation of the discontinuous Galerkin

method is given for a model class of steady-state, scalar, linear hyperbolic prob-

lems in two dimensions. There a notion of hp-dependent norms is introduced

which generalizes to hp-methods the idea of mesh-dependent norms used by

Johnson and Pitkaranta [30]. Conceptually, one considers a partition of a do-

main 
 � <2 into �nite elements and assigns to each element K a positive

number p
K
which is designed to appear in coe�cients of a mesh-dependent

norm in a way to optimize subsequent estimated convergence rates. The num-

bers p
K
are identi�ed with the maximum spectral orders of the shape functions

used in approximations over K. A priori error estimates are derived in these

norms.

In Chapter 3, the subject of a posteriori error estimates for the model

problem is investigated. An extension of the element residual method to hy-

perbolic conservation laws is described. In the present investigation, two types

of estimates are produced, one which delivers an upper bound to the global

error in a suitable mesh-dependent norm and a lower bound in another related

norm. Theorems are proven which establish that these estimates are indeed

valid bounds on appropriate measures of the approximation error.

The availability of both a priori and a posteriori error estimates provides

a powerful basis for developing adaptive strategies to control the error. In

Chapter 4, an extension of the 3-step adaptive strategy for hp-�nite element

methods is presented. This work extends the development in [39] to hyperbolic

conservation laws and represents, we believe, the �rst hp-adaptive methodology

ever developed for this class of problem.
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Chapter 5 is devoted to numerical experiments and testing of the the-

oretical results developed in earlier chapters. Several model problems in two

dimensions are studied, including examples in non-rectangular domains. The

numerical results exhibit signi�cant features of the theory and the methodolo-

gies developed: 1) the asymptotic rates of convergence predicted by our theory

of a priori estimates are fully con�rmed by the computed rates; 2) exponential

rates of convergence or super algebraic rates are observed, justifying �nally the

decision to use nonuniform hp-meshes for these types of problems; 3) the a

posteriori estimation methods produce very good estimates of the actual error,

with e�ectivity indices near unity in many cases, and with remarkably good

local error indicators in most of the cases considered; 4) the 3-step adaptive

strategy works surprisingly well and delivers a targeted error level quite regu-

larly in around 3 steps; the signi�cant accuracy with which the 3-step scheme

was able to produce a mesh with a prescribed global error was unexpected.

In Chapter 6, issues of parallelization of the adaptive methods are in-

vestigated. There the local character of discontinuous Galerkin methods is

exploited when possible. A parallel algorithm designed for implementation on

the Intel iPSC860 computer with 16 processors is described and the results of

numerical tests are presented. A major issue in the parallel implementation

of hp-adaptive schemes is the design of domain decomposition strategies which

result in a balanced work load on all processors. Two domain decomposition

strategies recently developed by Patra [40] are used and nearly linear increases

in speed are observed for certain cases.

Chapter 7 is devoted to some preliminary results on extensions of the

work to nonlinear conservation laws. A model problem involving the solu-
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tion of Burgers' equation on a two-dimensional domain is investigated. The

exploratory results suggest that the methods developed here could be very ef-

fective for problems of this type. The local projection developed in this work

is extremely e�ective at controlling oscillations at discontinuities without de-

stroying accuracy in smooth regions. The projection strategy is a simple one

designed with the idea of combining low-order approximations at shocks with

higher-order approximations in smooth regions.

Finally, in Chapter 8, the major conclusions of the study are given

together with suggestions for future work.



Chapter 2

The Discontinuous Galerkin Method

The methods presented in this chapter are valid for hyperbolic systems of con-

servation laws in multiple space dimensions. For clarity of presentation and

for the purposes of analysis, however, we limit the discussion to a scalar lin-

ear hyperbolic conservation law. We begin with a detailed description of the

method for a linear model problem and prove some important properties. Next

we describe a �nite element approximation and derive a priori error estimates

for an hp-version of the discontinuous Galerkin method.

2.1 A Linear Model Problem

We consider a linear scalar hyperbolic conservation law on a convex polygonal

domain 
. Let � = (�1; �2)
T

denote a constant unit velocity vector. The

domain boundary @
 with an outward unit normal vector n(x) consists of two

parts: an in
ow boundary �� = fx 2 @
 j � � n(x) < 0g and an out
ow

boundary �+ = @
 n ��. Let u denote the quantity that is to be conserved in


 and consider the following hyperbolic boundary-value problem:

� �ru+ au = f in 
 � R2 (2.1)

15
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� � n u = � � n g on �� (2.2)

where f 2 L2(
), g 2 L2(��), and a = a(x) is a bounded measurable function

on 
 such that 0 < a0 � a(x). While this is the simplest of hyperbolic conser-

vation laws, solutions to (2.1) may contain discontinuities along characteristic

lines x(s) de�ned by @x

@s
= �. Solutions to (2.1) belong to the space of functions

V (
) = fv 2 L2(
) j v� 2 L2(
)g where v� = � �rv.

2.2 Notation

Throughout this work, notations and conventions standard in the literature

on the mathematics and application of �nite elements are used. Particularly,

Hs(
) denotes the usual Sobolev space of functions with distributional deriva-

tives of order s in L2(
), equipped with the norm,

jjujjs;
 =

8<:
Z



X
j�j�s

jD�uj2dx
9=;

1

2

Other notations and norms are de�ned in this section and where they �rst

appear in the text.

The starting point for the discontinuous Galerkin method is (2.1) de�ned

on a partition of 
. Let Ph denote a partition of 
 into N = N(Ph) subdomains

K with boundaries @K such that

(i) N(Ph) <1

(ii) �
 =
Sf �K : K 2 Phg

(iii) For any pair of elements K;L 2 Ph such that K 6= L, K \ L = 0
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(iv) K are Lipschitzian domains with piecewise smooth boundaries. The

outward unit norm to @K is denoted by nK .

(v) @K� = fx 2 @Kj � � nK < 0g and @K+ = @K n @K� and no

boundary @K coincides with a streamline, nK � � 6= 0

(vi) �h� =
SNK

K=1 @K \ �� coincides with �� for every h > 0

(vii) �KL = @K \ @L is an entire edge of both K and L

(viii) The elements K 2 Ph are a�ne maps of a master element K̂ =

[�1; 1]� [�1; 1]; K = F
K
(K̂) as illustrated in Fig. 2.1.

(ix) Ph 2 F where F is a family of quasi-uniform re�nements. Let hK =

diam(K) and �K denote the supremum of all spheres contained in

K; then for all Ph 2 F , there exist positive constants � and � ,

independent of h = maxK2Ph hK , such that

h

hK
� � and

hK

�K
� � (2:3)

We extend V (
) to the partition using the broken space

V (Ph) =
Y

K2Ph
V (K)

V (K) = fv 2 L2(K)j v� 2 L2(K)g

which admits discontinuities across element interfaces and use the following

notations concerning functions v;w 2 V (Ph) :

vint K = vj
K
(x); x 2 @K
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y

K
1 2

34

ξ

η

(-1,-1) (1,-1)

(1,1)(-1,1)

F
K

K

1

2

3

4 K

x

Figure 2.1: The a�ne map of the master element K̂ to a typical element
K 2 Ph.
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vext K = vj
L
(x); x 2 @K \ @L

v� = lim
�!0

v(x� ��)

hv;wi
 =
Z


vwj� � n
j ds; 
 � @K

hhvii2
 = hv; vi


(v;w)
K

=
Z
K

vwdx (2.4)

jjvjj
K

= (v; v)
K

We de�ne the following norms for functions v 2 V (Ph):

jjjvjjj
B;K

def
=

n
jjv�jj2

K
+ jjvjj2

K
+ hhvii2

@K

o 1

2

=
n
jjv�jj2K + jjvjj2

K
+ hhv+ii2@K� + hhv�ii2@K+

o1
2

jjjvjjj
1;� ;K

def
=

n
jjv�jj2

K
+ jjvjj2

K
+ hhv+ � v�ii2

@K�n�� + hhvii
2
@K\@


o 1

2

jjjvjjj
B

def
=

8<: X
K2Ph

jjjvjjj2
B;K

9=;
1
2

jjjvjjj� def
=

8<: X
K2Ph

"
jjvjj2

K
+

 
1 + �

hK

p2K

!
hhv+ii2@K�

#9=;
1

2

jjjvjjj+ def
=

8<: X
K2Ph

"
jjvjj2

K
+

 
1 + �

hK

p2K

!
hhv�ii2

@K+

#9=;
1
2

jjjvjjj�;� def
=

8<: X
K2Ph

h
�
K
jjv�jj2

K
+ jjvjj2

K
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+ (1 + �
hK

p2K
)
�
hhv+ � v�ii2

@K�n�� + hhvii
2
@K\@


�#) 1

2

(2.5)

where � is used to indicate the value of the parameter �
K
.

If � = �hp then �
K
= �

hK

p2K

If � = hp then �
K
=
hK

p2K

If � = h then �
K
= h

K

If � = 0 then �
K
= 0

If � = 1 then �
K
= 1

The parameter p
K
appearing in the de�nition of �

K
in the mesh-dependent

norm (2.5) will later represent the spectral order of the polynomial approxima-

tion inK. The case in which the coe�cient �
K
= hK

p2
K

in (2.5) plays an important

role in the stability and error of the method, as we show later. Throughout C

is used to denote a generic positive constant, not necessarily the same at each

occurence.

2.3 Weak Formulation

Property (v) of the partition implies that solutions u 2 V (
) to (2.1) are con-
tinuous across element interfaces. Since the broken space admits discontinuities

along element interfaces, we have the following problem corresponding to (2.1)
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on the partition Ph:
Find u 2 V (Ph) such that for every K 2 Ph;

u� + au = f in K

uint K� � nK = uext K� � nK 8x 2 @K� n @


uint K� � nK = g � � nK 8x 2 @K� \ ��

9>>>>>>>>>>=>>>>>>>>>>;
(2.6)

for which weak solutions are sought satisfying

Find u 2 V (Ph) such that for every K 2 Ph;

(u� + au;w)
K

= (f;w)
K
8w 2 V (K)

huint K; vi@K�n@
 = huext K; vi@K�n@
 8v 2 V (K)

huint K; vi@K�\�� = hg; vi@K�\�� 8v 2 V (K)

9>>>>>>>>>>=>>>>>>>>>>;
(2.7)

where we have taken the absolute value of � � nK for convenience. Next, we

introduce a global parameter � which has a value of either 0 or 1. Recall that

for any v 2 V (K) we have that v� 2 L2(K) so that we can set w = v+� hK
p2
K

v� in

(2.7) and then add the boundary integral equations multiplied by any constant.

It will be convenient to choose this constant to be (1 + � hK
p2
K

) and to write the

method in the following abstract form. Let

B
K
(u; v)

def
= (u� + au; v+ �

hK

p2K
v�)K + (1 + �

hK

p2K
)hu+ � u�; v+i@K�n��

+ (1 + �
hK

p2K
)hu+; v+i@K�\�� (2.8)

L
K
(v)

def
= (f; v + �

hK

p2K
v�)K + (1 + �

hK

p2K
)hg; vi@K�\�� (2.9)

where, by de�nition, u+ = uint K and u� = uext K on @K�. Summing over all

the elements in the partition yields the variational boundary value problem for

weak solutions to (2.1) on the partition:
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Find u 2 V (Ph) such that

B(u; v) = L(v) ; for every v 2 V (Ph) (2:10)

where

B(u; v)
def
=

X
K2Ph

B
K
(u; v) (2.11)

L(v)
def
=

X
K2Ph

L
K
(v) (2.12)

Remarks:

(i) The case � = 0 in (2.8) is referred to as the "standard" discontinu-

ous Galerkin method which can be viewed as a standard Galerkin

method for a single element with weakly imposed boundary condi-

tions for elements lying on the in
ow boundary and weakly imposed

continuity for elements on the interior of the domain.

(ii) The case � = 1 in (2.8) is the hp extension of the so-called "stream-

line upwind" discontinuous Galerkin method [29]. The modi�cation

of the test function is important when approximating solutions with

sharp gradients as the additional term in the test function adds

di�usion in the streamline direction without modifying the conser-

vation law, i.e., without destroying accuracy in regions where the

solution is smooth.

Lemma 2 Let the bilinear form B(�; �) be de�ned by (2.11) and (2.8). Then

there exists positive constants �, M1, and M2, independent of hK and p
K
, such
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that

B(v; v) � �jjjvjjj2�hp;� (2.13)

B(w; v) � M1

8<: X
K2Ph

 
1 + �

hK

p2K

!
jjjwjjj2

1;�;K

9=;
1

2

�
8<:jjjvjjj2� + �

X
K2Ph

hK

p2K

h
jjv�jj2

K
+ hhv+ii2

@K�

i9=;
1
2

(2.14)

B(w; v) � M1

8<: X
K2Ph

jjjwjjj2+ + �
X
K2Ph

hK

p2K

h
jjw�jj2K + hhw�ii2@K+

i9=;
1

2

�
8<: X
K2Ph

 
1 + �

hK

p2K

!
jjjvjjj

1;�;K

9=;
1
2

(2.15)

B(w; v) � M2

8<: X
K2Ph

 
1 + �

hK

p2K

!
jjjwjjj2

B;K

9=;
1
2

�
8<: X
K2Ph

 
1 + �

hK

p2K

!
jjjvjjj2

B;K

9=;
1

2

(2.16)

for every w; v 2 V (Ph).

Proof: (i) From the de�nition of B(�; �),

B(v; v) � min(1;min
x2


a(x))
X
K2Ph

( 
1 + �

hK

p2K

!
(v; v�)K + �

hK

p2K
jjv�jj2K + jjvjj2

K

+

 
1 + �

hK

p2K

!�
hhv+ii2

@K�n�� � hv�; v+i@K�n�� + hhvii
2
@K�\��

�)

Equation (2.13) follows by substituting the results of applying Green's formula

to the term (v; v�)K , that is,

X
K2Ph

(v; v�)K =
1

2

X
K2Ph

�
hhv�ii2

@K�n�� + hhv+ii
2
@K�n�� + hhvii

2
@K\@


�
(2:17)
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into the above and choosing � = 1
2
min(1;minx2
 a(x)).

(ii) Applying the Schwarz inequality to B(�; �) as de�ned in (2.11) and (2.8)

yields

B(w; v) � jjajj1;


X
K2Ph

"
jjw�jjK jjvjjK + �

hK

p2K
jjw�jjK jjv�jjK + jjwjj

K
jjvjj

K

+ �
hK

p2K
jjwjj

K
jjv�jjK +

 
1 + �

hK

p2K

!
hhw+ � w�ii@K�n��hhv+ii@K�n��

+

 
1 + �

hK

p2K

!
hhw+ii@K�\��hhv+ii@K�\��

#

� jjajj1;


8<: X
K2Ph

 
1 + �

hK

p2K

! h
jjw�jj2

K
+ jjwjj2

K

+ hhw+ � w�ii2@K�n�� + hhwii
2
@K\@


io 1

2

�
8<: X
K2Ph

"
2�
hK

p2K
jjv�jj2K + 2jjvjj2

K
+

 
1 + �

hK

p2K

!
hhv+ii2@K�

#9=;
1

2

Equation (2.14) follows by selecting M1 =
p
2jjajj1;
.

(iii) Equation (2.15) is obtained by applying Greens formula to the term (w; v�)K

and (w�; v)K in (2.11), and applying the Cauchy-Schwarz inequality.

(iv) Equation (2.16) is obtained by adding (2.14) and (2.15), applying the

Cauchy-Schwarz inequality to the result, and selecting M2 =
3
2jjajj1;
.

Corollary 1 Let � = 1 in (2.8). Then

B(v; v) � �jjjvjjj2hp;� (2:18)

and there exists a constant r0 such that if hK
p2
K

� r0 8K 2 Ph,

B(w; v) � M 0
1jjjwjjj1;�

8<:jjjvjjj2� + X
K2Ph

hK

p2K
jjv�jj2

K

9=;
1
2

(2.19)
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B(w; v) � M 0
1

8<:jjjwjjj2+ +
X
K2Ph

hK

p2K
jjw�jj2K

9=;
1

2

jjjvjjj1;� (2.20)

B(w; v) � M2(1 + r0)jjjwjjjBjjjvjjjB (2.21)

Proof: Set � = 1 in (2.13)-(2.16) and choose M 0
1 =M1

p
1 + r0max(1;

p
r0).

Corollary 2 Let � = 0 in (2.8). Then

B(v; v) � �jjjvjjj20;� (2.22)

B(w; v) � M1jjjwjjj1;�jjjvjjj� (2.23)

B(w; v) � M1jjjwjjj+jjjvjjjj1;� (2.24)

B(w; v) � M2jjjwjjjB jjjvjjjB (2.25)

Remark:

Note that modi�ed test function for the streamline upwind discontinuous Galerkin

method results in improved stability of the bilinear form when compared to the

standard Galerkin method (see (2.18) and (2.22)). The coercivity of the bilin-

ear form for the streamline upwind discontinuous Galerkin method contains

jjv�jjK terms which do not appear in the coercivity condition for the standard

Galerkin method. The signi�cance of this additional stability is less important

as hK
p2
K

approaches zero.
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2.4 hp Finite Element Approximation

We seek approximate solutions to (2.10) in the �nite dimensional subspace

Vp(Ph) � V (Ph) de�ned as follows:

Vp(Ph) = fv 2 L2(
) : vj
K
= v̂j

K
� F

K
2 Qp

K (K)g (2:26)

where Q
p
K (K) is the space of tensor products of polynomials of degree p

K

de�ned on the master element. The basis for Q
p
K (K) is formed by tensor

products of Legendre polynomials. We use the notation v
K
2 Qp

K (K) to mean

v̂
K
2 Qp

K (K̂) and v
K
= v̂

K
� F

K
. We have the following inverse estimates for

polynomials on a single element:

Lemma 3 Let K 2 R2 be an a�ne map of a master element K̂ = [�1; 1] �
[�1; 1]; that is K = FK(K̂). Let 
 denote any edge of @K which is an a�ne

map of a master edge 
̂ = [�1; 1]. Let ŵK be a polynomial of degree pK de�ned

on the master element. Let wK = ŵK � FK denote the image of ŵK under the

transformation FK. Then � �rwK satis�es the following:

jj� �rwKjjK � C
p2K
hK
jjw

K
jjK (2.27)

hh� �rwKii
 � C
p4K
h2K
hhwKii2
 (2.28)

where the constants C are independent of h
K
; p

K
, and wK.

Proof: For polynomials of degree pK on the master element (see Dorr [21]):

jŵKjs;K̂ � jjŵKjjs;K̂ � Cp2sK jjŵKjjK̂ (2.29)

jŵKjs;
̂ � jjŵKjjs;
̂ � Cp2sK jjŵKjj
̂ (2.30)

where the constants C > 0 depends on s, but not on p
K
or ŵK.
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For a�ne mappings FK, a standard scaling argument (see Ciarlet [11])

yields that for an integer s � 0, there exist constants C > 0 such that

jwKjs;K � Ch1�sK jŵKjs;K̂ (2.31)

jwKjs;
 � Ch
1

2
�s

K jŵKjs;
̂ (2.32)

jŵKjs;K̂ � Chs�1K jwKjs;K (2.33)

jŵKjs;
̂ � Ch
s� 1

2

K jwKjs;
 (2.34)

where C depends on s, �, and � (see (2.3)), but not on h
K
, p

K
, or wK.

The �rst estimate (2.27) follows by combining (2.31), (2.29), and (2.33).

The second estimate (2.28) follows from (2.32), (2.30), and (2.34).

Lemma 4 (Babu�ska and Suri [3]) Let K 2 Ph, 
 denote any edge of @K,

and u 2 Hs(K). Then there exists a constant C = C(s; �; �) independent of

u; pK, and hK, and a sequence zph 2 Q
p
K (K); pK = 1; 2; : : :, such that for every

0 � r � pK,

jju� zphjjr;K � C
h��rK

ps�rK

jjujjs;K; s � 0 (2.35)

jju� zphjj0;
 � C
h
�� 1

2

K

p
s� 1

2

K

jjujjs;K; s � 1

2
(2.36)

where � = min(pK + 1; s).

The approximate solution to (2.10) is obtained by replacing the exact

solution u 2 V (Ph) by u
p
h 2 Vp(Ph) and the test function v 2 V (Ph) by

v
p
h 2 Vp(Ph):

Find uph 2 Vp(Ph) such that
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B(uph; v
p
h) = L(vph) ; 8vph 2 Vp(Ph) (2:37)

The improved stability of the streamline upwind discontinuous Galerkin

method, � = 1 in (2.8), is recovered by the standard discontinuous Galerkin

method, � = 0 in (2.8), on the �nite dimensional space Vp(Ph).

Lemma 5 Let � = 0 in (2.8). Then for every vph 2 Vp(Ph) there exists a

w
p
h 2 Vp(Ph) such that

B(vph; w
p
h) � �0jjjvphjjj2hp;� (2:38)

and

jjjwphjjjhp;� � Cjjjvphjjjhp;� (2:39)

where the positive constants �0 and C are independent of h
K
, p

K
, and vph.

Proof: De�ne the restriction of wph 2 Vp(Ph) to an element K 2 Ph as

w
p
hjK = v

p
hjK + 


hK

p2K
� �rvphjK (2:40)

where 
 2 (0; 1] is de�ned later in the proof. Dropping the h; p; and K scripts

for ease in notation, we have

BK(v;w) =
Z
K
(v� + av)(v+ 


hK

p2K
v�) dx

+
Z
@K�n��

(v+ � v�)(v+ + 

hK

p2K
v�

+)j� � nK j ds

+
Z
@K�\��

v+(v+ + 

hK

p2K
v�

+)j� � nKj ds

� a0jjvjj2K + 

hK

p2K
jjv�jj2K +

Z
K
vv� dx
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+ 

hK

p2K

Z
K
vv� dx+ hhv+ii2@K�\�� + hhv+ii

2
@K�n��

�
Z
@K�n��

v+v�j� � nKj ds + 

hK

p2K

Z
@K�n��

(v+ � v�)v�+j� � nK j ds

+ 

hK

p2K

Z
@K�\��

v+v�
+j� � nK j ds

where a0 = minx2
 a(x). Noting that

Z
K
vv� dx =

1

2

Z
@K+

(v�)2j� � nK j ds� 1

2

Z
@K�

(v+)2j� � nKj ds (2:41)

and that from Lemma 3

j
Z
K
vv� dxj � c1

p2K
hK
jjvjj2K

j
Z
@K�

v+v�
+j� � nKj dsj � c2

p2K
hK
hhv+ii2@K�

we have

BK(v;w) � (a0 � c1
)jjvjj2K + 

hK

p2K
jjv�jj2K

+
1

2
hhv+ii2@K�n�� + (

1

2
� c2
)hhvii2@K�\��

�
Z
@K�n��

v+v�j� � nKj ds + 

hK

p2K

Z
@K�n��

(v+ � v�)v�+j� � nK j ds

Using the Schwarz inequality and the previous inequalities, one can show that

j
 hK
p2K

Z
@K�n��

(v+ � v�)v�+j� � nKj dsj � 3c2
2

(hhv + ii2@K�n��

+ hhv�ii2@K�n��)

Now summing over all the elements K 2 Ph and realizing that

X
K2Ph

f1
2
hhv�ii2

@K�n�� �
3c2
2

hhv�ii2

@K�n��
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+ (
1

2
� 3c2

2

)hhv+ii2@K�n�� �

Z
@K�n��

v+v�j� � nKj dsg

� 1

2
hhvii2�+ +min(1;

1

2
� 3c2

2

)

X
K2Ph

hhv+ � v�ii2
@K�n��

results in

B(vph; w
p
h) � (a0 � c1
)jjvjj2
 + 


X
K2Ph

hK

p2K
jjv�jj2K

+ (
1

2
� c2
)hhvii2�� +

1

2
hhvii2�+

+ min(1;
1

2
� 3c2

2

)

X
K2Ph

hhv+ � v�ii2@K�n��

Choosing 
 = min(1
4
; a0
2c1
; 1
6c2

) yields the �rst inequality.

The second inequality easily follows from the de�nition of wph and Lemma 3.

2.5 A Priori Error Estimate

The discontinuous Galerkin method (2.37) was �rst analyzed by Lesaint and

Raviart [33] for a given �xed value of p
K
, i.e. for the case in which p

K
= p for

every element K 2 Ph. The error in a solution uh to (2.37) approximating an

exact solution u 2 Hs(
) to (2.10) was shown to be

jju� uhjj
 � Chs�1jjujjs;


This estimate is not optimal in the sense of interpolation error estimates and

was improved by Johnson and Pitkaranta [30]. Using a mesh-dependent norm,

they showed that

jjju� uhjjjh;� � Chs� 1
2 jjujjs;
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While this estimate is not optimal in the sense of interpolation error estimates

for jjejj
 = jju � uhjj
, it is optimal with respect to
q
h
K
jje�jjK and hhe+ �

e�ii@K�n��. We shall derive estimates similar to Johnson and Pitkaranta [30]

taking into account that p
K
is not constant.

Theorem 1 Let u 2 Hs(
) be a solution to (2.10) and let uph be a solution to

(2.37). Then there exists a positive constant C, independent of h
K
, p

K
, and u,

such that the error, e = u� uph, satis�es the following estimate

jjjejjjhp;� � C

8<: X
K2Ph

24h2�K�1K

p2s�2
K

max

 
1;

h
K

p2
K

!
jjujj2s;K

359=;
1

2

(2:42)

where �
K
= min(p

K
+ 1; s).

Proof: Let �p
hu 2 Vp(Ph) be an approximation of u that satis�es the estimates

in Lemma 4 and write

e = u� uph = u��p
hu+�p

hu� uph (2:43)

which implies that

jjjejjjhp;� � jjju��p
hujjjhp;� + jjjuph ��p

hujjjhp;�
def
= jjj�jjjhp;� + jjjwjjjhp;� (2.44)

where, to simplify the notation, we set � = u � �p
hu and w = u

p
h � �p

hu.

Realizing that

jjjvjjjhp;� � C
8<: X
K2Ph

"
hK

p2K
jjv�jj2

K
+ jjvjj2

K
+

 
1 + �

hK

p2K

!
hhvii2

@K

#9=;
1
2

; 8v 2 V (Ph)
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combined with Lemma 4 yields bounds for the �rst term in (2.44):

jjj�jjjhp;� � C

8<: X
K2Ph

24h2�K�1K

p2s
K

+
h
2�

K
K

p2s
K

+
h
2�

K
�1

K

p2s�1
K

+ �
h
2�

K
K

p2s+1
K

35 jjujj2s;K
9=;

1

2

� C

8<: X
K2Ph

h
2�

K
�1

K

p2s�2
K

max

 
1

p
K

;
hK

p2K

!
jjujj2s;K

9=;
1
2

(2.45)

where �
K
= min(p

K
+ 1; s). Bounds for the second term in (2.44) follow from

the orthogonality condition which is obtained by subtracting (2.37) from (2.10):

B(e; vph) = B(�; vph)�B(w; vph) = 0 ; 8vph 2 Vp(Ph) (2:46)

We choose vph = v� in (2.46) where the particular choice for v� depends

on the parameter � in (2.8). For � = 0, we choose v� to be the function which

satis�es Lemma 5. For � = 1, we choose v� = w and combine (2.46) with

Corollary 1. The result for either case is

Cjjjwjjj2hp;� � B(w; v�) = B(�; v�) (2:47)

Integrating the terms (��; v�)K and (�; v��)K by parts in the de�nition of B(�; �)
in (2.11) yields

B(�; v�) � jjajj1;


X
K2Ph

24jj�jj
K
jjv�jj

K
+

p
Kq
h
K

jj�jj
K
�
q
h
K

p
K

jjv��jjK

+ �
hK

p2K
jj��jjK jjv��jjK + �

hK

p2K
jj��jjK jjv�jjK

+

 
1 + �

hK

p2K

!
hh��ii

@K+n�+hhv�+ � v��ii@K+n�+

+

 
1 + �

hK

p2K

!
hh��ii

@K+\�+hhv��ii@K+\�+

#

� jjajj1;
(1 + �)

8<: X
K2Ph

" 
1 +

p2
K

h
K

!
jj�jj2

K
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+ �
hK

p2K

 
1 + �

hK

p2K

!
jj��jj2K

+

 
1 + �

hK

p2K

!
hh��ii2

@K+

#) 1

2

jjjv�jjjhp;� (2.48)

Recall that for our choice of v� we have jjjv�jjjhp;� = jjjwjjjhp;� when � = 1

and jjjv�jjjhp;� � Cjjjwjjjhp;� when � = 0. Equations (2.48), (2.47), and the

estimates in Lemma 4 imply that

jjjwjjjhp;� � C

8<: X
K2Ph

h
2�

K
�1

K

p2s�2
K

"
hK

p2K

 
1 +

p
K

h
K

!
+ �

 
1 + �

hK

p2K

!

+
1

p
K

 
1 + �

hK

p2K

!#
jjujj2s;K

) 1

2

� C

8<: X
K2Ph

h
2�

K
�1

K

p2s�2
K

max

 
hK

p2K
; 1;

1

p
K

; �
h2
K

p4
K

!
jjujj2s;K

9=;
1
2

(2.49)

Combining (2.49), (2.45), and (2.44) completes the proof.

Remarks:

(i) For hK
p2
K

� 1, the estimate becomes jjjejjjhp;� � CfPK2Ph
h
2�
K
�1

K

p
2s�2
K

jjujj2s;Kg
1

2

(ii) For p
K
=constant, the a priori error estimate reduces to the one

derived by Johnson and Pitkaranta[30].

(iii) Let h = maxK2Ph hK and p = minp
K
, then jjjejjjhp;� � h

�� 1
2

ps�1
jjujjs;
.

2.6 Implementation Issues

In the preceeding sections of this Chapter, the discontinuous Galerkin methods

were represented as global methods for the purpose of analysis. The approxi-
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mate problem is actually a local one since the approximate solution in an ele-

ment is independent of the solution in the neighboring elements with the only

coupling between elements occuring weakly through the 
uxes on the element

in
ow boundary. Assume that uph
� is known on @K�, then the approximate

solution in element K satis�es

~B
K
(uphjK ; vphjK) = ~L

K
(vphjK) ; 8 vphjK 2 Q

p
K (K) (2:50)

where

~B
K
(uph; v

p
h)

def
= (uph� + auph; v

p
h + �

hK

p2K
vph�)K (2.51)

+ (1 + �
hK

p2K
)huph+; vph+i@K� (2.52)

~L
K
(vph)

def
= (f; vph + �

hK

p2K
v
p
h�)K + (1 + �

hK

p2K
)huph�; vph+i@K�n��

+ (1 + �
hK

p2K
)hg; vph+i@K�\�� (2.53)

In order to solve (2.37) in this fashion, one must de�ne an ordering of elements

that starts at the domain in
ow boundary and sweeps through the partition in

such a way that uph
� is known on @K� prior to solving (2.50). Such an ordering

always exists (see [33]) and is fairly straightforward to construct. This is the

optimal solution technique for solving the linear model problem where element

in
ow boundaries can be identi�ed a priori. However, an alternate approach is

needed for solving the conservation law (1.5) where the 
uxes depend on the

solution, and thus, element in
ow boundaries cannot be identi�ed a priori.

With the aim of solving more general problems in mind, we will solve the

linear model problem in a way that is easily extendable to the nonlinear case,
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that takes full advantage of the discontinuous approximation, and is amenable

to parallel computations; that is, by solving the time-dependent conservation

law for the steady-state solution. Since time accuracy is not important in

obtaining the steady solution, we use the classical forward or backward Euler

time marching with a truncation error of O(�t2). Let un+1 = u
p
h(�; tn+1) where

tn+1 = (n+ 1)�t and �t is the time step increment. Assuming the solution at

time tn is known, then the forward Euler version of the scheme is given by

X
K2Ph

(un+1; v)
K
=

X
K2Ph

(un; v)
K
+�t [L(v)�B(un; v)] (2:54)

and the backward Euler version is given by

X
K2Ph

(un+1; v)
K
+�t

X
K2Ph

~B
K
(un+1; v) =

X
K2Ph

(un; v)
K
+�t

X
K2Ph

~LK(v) (2:55)

To preserve the local character of the method, the in
ow boundary terms ap-

pearing in the de�nition of ~LK(v) (see 2.53) are evaluated at time level tn.

The initial data, u0 = uph(�; 0), needed to complete the initial-boundary-value

problem is taken to be a uniform �eld with a value associated with the in
ow

boundary conditions.

A time-accurate Runge-Kutta time marching scheme for nonlinear con-

servation laws is described in detail in Chapter 7. It can essentially be written

as a sequence of steps in the same form as (2.54). Parallel implementation of

the time marching discontinuous Galerkin methods for general hp meshes is

described in Chapter 6.



Chapter 3

A Posteriori Error Estimation

The a priori estimates derived in the previous chapter are useful for predicting

how the error in numerical solutions behaves with h-re�nement or p-enrichment.

Unfortunately, their usefulness in assessing the accuracy of a given numerical

solution is limited since the estimate involves unknown constants and the exact

solution we are approximating. Nevertheless, a priori error estimates such as

(2.42) and interpolation error estimates such as (2.45) have been used exten-

sively as error indicators to drive adaptive methods for hyperbolic problems

[16], [43], [36]. Typically the unknown constant is set to unity and some post-

processing of the approximate solution is used in place of the exact solution.

While the element contributions to these global estimates may provide some

relative measure of the local error, this approach in general fails to provide a

reliable estimate of the actual error in a particular numerical solution and can

be grossly in error.

In this chapter, we derive error estimates which are computed locally

on a single element and contribute to a global error estimate which is accu-

rate enough to provide a reliable assessment of the quality of the approximate

solution.

36
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3.1 Element Residual Method

The estimates derived here, based on the element residual method, are simil-

iar to those proposed by Bank and Weiser [4] for elliptic problems and Oden,

Demkowicz, Strouboulis, and Devloo [38] for solid and 
uid mechanics prob-

lems. The element residual method was extended to hp-approximations for

elliptic problems by Oden, Demkowicz, Rachowicz, and Westerman [37]. A

global estimate of the error is obtained by summing element indicators which

are the solutions to a local problem with the element residual as data. In

references [38] and [37] , the local problem is of the same form as the global

problem.

For continuous �nite element approximations, the element residual in-

volves 
uxes on the boundary of an element. Since the 
uxes are multi-valued,

an averaged 
ux is used. Recently, Ainsworth and Oden [1], [2] have shown

that it is possible to use a self-equilibrating average 
ux that results in an error

estimate which is equivalent to the actual error and can be asymptotically ex-

act for certain elliptic problems. For a discontinuous approximation, the jump

in the element boundary 
ux arises naturally in the residual, eliminating the

need for 
ux balancing.

The main di�culty with our formulation for hyperbolic conservation

laws is that the norms associated with the continuity and coercivity of the

bilinear form are di�erent. Therefore, use of di�erent norms makes it impossible

to construct a single local problem which results in an upper and lower bound

of the error in the same (or an equivalent) norm.

In the following sections we show that it is possible, however, to con-

struct one local problem with a solution that provides a lower bound on the
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actual error and another local problem with a solution that provides an upper

bound on the actual error. We also show that a local problem based on the

original problem results in a local lower bound. Moreover, if the approximation

of the solution to this local problem is limited to a certain class, then the es-

timate is equivalent to another commonly used approach: estimating the error

as the di�erence between a newly contructed (and hopefully more accurate)

solution and the approximate solution on hand.

3.2 A Global Lower Bound on the Error

We de�ne a local problem which results in a lower bound on the error in a

sense to be de�ned precisely later. Let û
K
2 Qp

K (K) denote the approximate

solution in element K and '
K
2 V (K) be the solution to the following local

problem,

A
L

K
('

K
; v

K
) = B

K
(e

K
; v

K
) = L

K
(v

K
)�B

K
(û

K
; v

K
) 8v

K
2 V (K) (3:1)

where

A
L

K
('

K
; v

K
)
def
=

hK

p2K
(� �r'

K
;� �rv

K
)
K
+ �a('

K
; v

K
)
K
+ h'

K
; v

K
i@K� (3:2)

and �a > 0 is a constant. Then

A
L

('; v) =
X
K2Ph

A
L

K
('

K
; v

K
) (3:3)

induces a norm on V (Ph) which will be referred to as the A
L

-norm:

jjvjj2
A
L
= A

L

(v; v) 8v 2 V (Ph) (3:4)

The solution to the local problem (3.1) provides a lower bound on the

error in the following sense:
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Lemma 6 Let ' 2 V (Ph) be the solution to the following problem:

A
L

('; v) = B(e; v) 8v 2 V (Ph) (3:5)

There exist positive constants k1 and r0 such that if hK
p2
K

� r0 8K 2 Ph then

jj'jj
A
L
� k1jjjejjj1;� (3:6)

Proof: jj'jj2
A
L
= A

L

(';') = B(e; ')

� M1

8<: X
K2Ph

 
1 + �

hK

p2K

!
jjjejjj2

1;�;K

9=;
1
2

�
8<: X
K2Ph

"
�
hK

p2K
jj'�jj2K + jj'jj2

K

+

 
1 + �

hK

p2K

!
hh'+ii2

@K�

#) 1

2

from (2.14)

� M1(1 + �r0)max(1;
1p
�a
)jjjejjj

1;�
jj'jj

A
L

The desired inequality (3.6) follows by choosing k1 = M1(1 + �r0)max(1; 1p
�a
).

3.3 A Global Upper Bound on the Error

For simplicity, the estimates in this section are derived for the case when � = 1

in (2.8). We construct a local problem which results in an upper bound on the

error. Let û
K
2 Qp

K (K) denote the approximate solution in element K and

 
K
be the solution to the following local problem,

A
U

K
( 

K
; v

K
) = B

K
(e

K
; v

K
) = L

K
(v

K
)�B

K
(û

K
; v

K
) 8 v 2 V (K) (3:7)
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where

A
U

K
( 

K
; v

K
)
def
=
hK

p2K
(� �r 

K
;� �rv

K
)
K
+ �a( 

K
; v

K
)
K

(3:8)

and �a > 0 is a constant. Then the A
U

-norm is de�ned as

jj jj2
A
U
= A

U

( ; ) =
X
K2Ph

A
U

K
( 

K
;  

K
) (3:9)

The solution to the local problem (3.7) provides an upper bound on the error

in the following sense:

Lemma 7 Let  2 V (Ph) be the solution to the following problem:

A
U

( ; v) = B(e; v) 8v 2 V (Ph) (3:10)

where � = 1 in the de�nition of B(�; �) in (2.11). Then there exists a positive

constant k2 such that

jj jj
A
U
� k2jjjejjjhp;� (3:11)

Proof: Using (2.18) of Corollary 1,

�jjjejjj2hp;� � B(e; e) = A
U

( ; e)

� jj jj
A
U
jjejj

A
U

= jj jj
A
U
f X
K2Ph

hK

p2K
jje�jj2K + �ajjejj2

K
g 12

� max(1;
p
�a)jj jj

A
U
f X
K2Ph

hK

p2K
jje�jj2K + jjejj2

K
g 12

� max(1;
p
�a)jj jj

A
U
jjjejjjhp;�

Choosing k2 =
�

max(1;
p
�a)
completes the proof.
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3.4 A Local Lower Bound on the Error

Recall the bilinear form (2.50) which characterizes the space marching form of

the discontinuous Galerkin method:

~B
K
(uph; v

p
h)

def
= (uph� + auph; v

p
h + �

hK

p2K
vph�)K

+ (1 + �
hK

p2K
)huph+; vph+i@K�

Introducing a local norm,

jjv
K
jj

~B
K

def
=

"
�
hK

p2K
jjv

K;� jj2K + jjv
K
jj2
K

+
1

2

 
1 + �

hK

p2K

!
hhv+ii2

@K�

+
1

2

 
1 + �

hK

p2K

!
hhv�ii2@K+

# 1
2

(3.12)

and using Green's formula, it is easy to show that there exist a constant C > 0

such that

~B
K
(v

K
; v

K
) � Cjjvjj2

~B
K

8v
K
2 V (K) (3:13)

Now consider the following local problem:

Find '
K
2 V (K) such that

~B
K
('

K
; v

K
) = B

K
(e

K
; v

K
) ; 8v

K
2 V (K) (3:14)

then '
K
provides a local lower bound on the error in the following sense.

Lemma 8 Let '
K
2 V (K) be the solution to (3.14). Then there exists a

constant k
3
> 0 such that

jj'
K
jj

~B
K

� k
3

 
1 + �

hK

p2K

!
jjjejjj1;�;K (3:15)
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Proof: Setting v
K
= '

K
in (3.14) and using (3.13) yields

Cjj'
K
jj2

~B
K

� ~B
K
('

K
; '

K
) = B

K
(e

K
; '

K
) (3:16)

Setting M
K
= max(1; jjajj1;K) and applying Young's inequality, ab � 1

4�
a2 +

�b2; � > 0, to each term in B
K
(e

K
; '

K
) yields

B
K
(e

K
; '

K
) � M

K

4�

 
1 + �

hK

p2K

!
jjjejjj21;�;K + 2M

K
�jj'

K
jj2

~B
K

(3:17)

Selecting � < C

2M
K

in (3.17) and combining with (3.16) completes the proof.

3.5 Approximation of the Local Problems

An approximate solution to the local problem measured in the corresponding

norm serves as a local error indicator for an element. Since the discontinuous

Galerkin solution satis�es the orthogonality condition,

BK(e; v) = 0 8v 2 Qp
K (K) (3:18)

we must approximate the error indicator with a polynomial of degree p
K
+ �

K

where �
K
� 1 in order for the discrete local problem to have a non-trivial

solution. If a complete polynomial of degree p
K
+ �

K
(on the master element)

is used to approximate the solution to the local problem, then the discrete local

problem requires the solution of a system of order (p
K
+�

K
+1)2. This system

can be fairly large compared to the system of order (p
K
+ 1)2 equations used

to obtain the approximate solution for which we are estimating the error.

Since (p
K
+1)2 terms on the right hand side of the discrete local problem

(corresponding to (3.18)) are zero, we can make a simpli�cation by approxi-

mating the solution to the local problem in the space Qp
K
+�

K (K) n Qp
K (K).
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In other words, the solution to the local problem can be approximated with

incomplete polynomials of degree p
K
+ �

K
by neglecting the terms associ-

ated with polynomials of degree p
K
. This simpli�cation results in a system

of �
K
(�

K
+ 2p

K
+ 2) equations for each element.

The size of the local problem can be further reduced by approximating

its solution using only the "bubble" functions in the enriched space denoted

by Q
p
K
+�

K
0 (K) nQp

K
0 (K). These are the polynomials in Qp

K
+�

K (K) nQp
K (K)

which are zero on the boundary of an element. This additional simpli�cation

results in a system of �
K
(�

K
+2p

K
�2) equations which is smaller than system

of equations used to obtain the approximate solution.

3.6 Remarks Concerning an Alternate Approach

Suppose that an approximation U to the exact solution u can be constructed

which is more accurate than the approximate solution on hand, uph. Then a

simple estimate of the error, e = u � uph = u � U + U � uph, is � = jjU � uphjj
where jj � jj is any suitable norm. Using the triangle inequality, we have

jjejj � jju� U jj � � � jjejj+ jju� U jj

or equivalently

1� jju� U jjjjejj � �

jjejj � 1 +
jju� U jj
jjejj

If jju � U jj << jjejj = jju� uphjj, then � = jjU � uphjj is a good error estimate

with an e�ectivity index near unity. The main di�culty with this approach

is to e�ciently construct such a U . One obvious strategy for constructing a

more accurate approximation, U , is to re-solve the approximate boundary-value

problem on an enriched space.
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For continuous �nite element approximations, this leads to a global sys-

tem of equations that is much larger, and therefore much more costly to solve,

than the original problem. For a discontinuous approximation, re-solving the

problem on an enriched space of complete polynomials is still more costly than

the original problem, but is no more costly than solving the local problems in

section 3.2-3.4 on the complete polynomial space.

The computational cost of this approach can be further reduced by

"freezing" the lower-order solution and re-solving the problem on an incomplete

polynomial space of bubble functions. In other words, let U
K
= u

p
hjK+wK

where

w
K
2 Qp

K
+�

K
0 (K) nQp

K
0 (K) satis�es

B
K
(w

K
; v) = L

K
(v)�B

K
(uph; v) 8v 2 Qp

K
+�

K
0 (K) nQp

K
0 (K) (3:19)

In this case, the error estimate is � = jjU�uphjj = jjwjj. Note that this is equiv-
alent to solving the local problem (3.14) on the space of bubble functions. We

remark that Peraire and Morgan [44] simply post-process the approximate solu-

tion to obtain the degrees-of-freedom (higher-order derivatives) corresponding

to the bubble functions.



Chapter 4

An hp-Adaptive Strategy

The hp-adaptive strategy used here is based on a 3-step strategy developed by

Oden, Patra, and Feng [39]. The strategy was developed for a large class of

elliptic problems and has been shown to yield exponential rates of convergence

with respect to CPU time [39]. The hp-adaptive strategy is based on a reliable a

posteriori error estimate for determining the error in the approximate solution

and an a priori error estimate for determining how to modify the mesh to

improve the solution accuracy to a speci�ed level. The goal of the hp-strategy

is to deliver a solution with a speci�ed error in only three steps:

(i) Construct an initial partition P0 containing N(P0) elements. The

elements in P0 can be of uniform p
K
= p

0
and essentially uniform

in h
K
= h

0
. Solve the problem of interest on Vp

0
(P0) and estimate

the error.

(ii) Construct a partition P1 by subdividing each element in P0 into

the number of elements required to equally distribute the error and

reduce it to a speci�ed level. Solve the problem on Vp
0
(P1) and

estimate the error.

45



46

(iii) Enrich the approximation space by increasing p
K
for every K 2 P1

in such a way to equally distribute the error in smooth regions and

reduce it to the speci�ed level. Solve the problem on the enriched

space Vp
1
(P1) and estimate the error.

If the estimated error in the solution is larger than the speci�ed error after the

third step, then it is necessary to repeat steps (ii) and (iii) until the desired error

is attained. For discontinuous solutions, p-enrichments in step (iii) are con�ned

to elements in regions where the solution is smooth, since higher-order elements

at discontinuities may result in oscillatory solutions. Moreover, p-enrichment

of elements in regions where the solution is of low regularity does not improve

the accuracy of the approximation, as indicated by the riori estimate (2.42).

The data structure used for the resulting hp-meshes is based on the

work of Demkowicz, Oden, Rachowicz, and Hardy[19] for continuous �nite ele-

ment approximations. The data structure for the initial mesh consists of nodal

coordinates, element connectivities, boundary conditions, a list of neighboring

elements, and element orders based on the number of edge and interior degrees

of freedom. Re�nements are achieved via bisection of an element in the initial

mesh and are added using a tree data structure. The data structure routines

enforce a mesh irregularity index of 1 and enrich the order of an edge for an

element with a neighboring element of higher-order. These two properties are

necessary for maintaining continuity of the �nite element approximation and

are not needed when using the discontinuous Galerkin approximation. The

data structure for the degrees of freedom for the discontinuous approximation

consists of three arrays to store the vertex, edge, and interior degrees of free-

dom. For non-uniform p-meshes, the edge (and interior) degrees of freedom are
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stored consecutively with integer arrays which provide the address of the �rst

location of the edge (and interior) degrees of freedom in the global array.

We make some basic assumptions before describing the adaptive strat-

egy in detail. First, recall that the norm used in the a priori estimate (2.42)

includes jump terms on the element in
ow boundaries:

8<: X
K2Ph

"
hK

p2K
jje�jj2K + jjejj2

K
+ hhe+ � e�ii2@K�n�� + hheii2@K\@


#9=;
1

2

� C
8<: X
K2Ph

24h2�KK

p2�K
K

max

 
1;
hK

p2K

!
jjujj2r;K

35
9=;

1

2

(4:1)

For the a posteriori estimate we have several choices: the solution to

the local problem which yields a lower bound (3.1), the solution to the local

problem which yields an upper bound (3.7), and the simple estimate obtained

by re-solving the problem on an enriched polynomial space (3.14). Since the

norm induced by the lower bound local problem contains the error on the

element in
ow boundary, and not the jump in the error as in (2.42), we cannot

use this estimate to drive our adaptive strategy. Fortunately, the norm induced

by the upper bound local problem contains no element boundary terms and the

simple estimate can be measured in any norm desired. We will use the norm

induced by upper bound local problem with �a = 1 and assume that the meshes

at each step in the adaptive procedure are such that max
�
1; hK

p2
K

�
= 1. Noting

that (2.42) is valid if we drop the jump terms we can write

jjejj
AU

=

8<: X
K2Ph

"
hK

p2K
jje�jj2K + jjejj2

K

#9=;
1

2

� C

8<: X
K2Ph

24h2�KK

p
2�

K
K

jjujj2r;K
359=;

1

2

(4:2)
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We assume that the a posteriori error estimate is a good enough approxima-

tion to the actual error to replace the left hand side of (2.42) and treat the

inequality as an equality. Admittedly, this may not be a good assumption for

coarse meshes and rough solutions, but it provides some means of predicting

the structure of the new mesh.

Since the adaptive procedure is based on re�nement and then enrich-

ment of an initial mesh, the term Cjjujj2r;K remains constant throughout the

adaptive process and can be calculated from the estimated error on the initial

mesh. Let �0 denote the estimated error for the solution û0 2 Vp
0
(P0) in step

(i). Then,

�20 =
X
K2P0

�20;K =
X
K2P0

h
2�

K
K

p
2�

K
0

Cjjujj2r;K =
X
K2P0

h
2�

K
K

p
2�

K
0

�
K

(4:3)

or at the element level

�
K
=
p
�
K

0

h
�
K

K

�0;K (4:4)

4.1 The h-Re�nement Step

Let �
T
denote the target error to be achieved by the entire 3-step strategy. We

specify �
T
as a percentage of the solution measured in the same norm as the

error to assign it some physical relevance. For the h-step, we seek a partition

which will deliver an intermediate target error �
h
= ��

T
where � is some

constant chosen so that �
T
< �

h
. The partition P1 is constructed by subdividing

each elementK 2 P0 into nK elements such that the error �
1
= �

h
(jjû

0
jj
AU

+�
0
)

is distributed equally among the elements in P1. Following (4.3), we have

�21 =
X
K2P0

n
KX

L=1

�21;L =
X
K2P0

n
KX

L=1

h
2�

K
L

p
2�

K
0

�2
L (4:5)
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where

h
L

=
h
Kp
n
K

�2
K

=

n
KX

L=1

�2
L (4.6)

For a mesh which achieves an equally distributed error,

�
1;L

=
�
1q

N(P1)
; L = 1; � � � ; N(P1) (4:7)

where

N(P1) =
N(P0)X
K=1

n
K

(4:8)

Combining (4.5),(4.6), and (4.7) yields

n�K+1
K

=
h
2�

K
K

p
0

2�
K

�2
K

�2
1

N(P1); K = 1; � � �N(P0) (4:9)

Equations (4.8) and (4.9) are solved iteratively to determinen
K
for each element

K 2 P0.

Remarks:

(i) A value of n
K
� 0 signals that de-re�nement is needed to equi-

distribute the error. Although not implemented in this work, de-

re�nement signi�cantly decreases the computational cost of the

overall process.

(ii) The largest local errors will occur in elements which contain a dis-

continuity. These elements will receive the highest level of re�ne-

ment.



50

(iii) For ease in implementation, the re�nement of an element K 2 P0
is limited to 2 levels.

(iv) The parameters �
K
= min(p0 +

1
2
; r � 1

2
) and �

K
= r � 1 are global

constants dictated by the regularity of the exact solution u 2 V (
).
Formally, (2.42) is not valid when the solution contains a discontinu-

ity on the interior of an element. However, numerical experiments

suggest that (2.42) the rate of convergence of the error is �
K
= 1

2

when the solution contains a discontinuity which is not alligned

with the element interfaces. This value of �
K
is consistent with the

�nite di�erence results of Sanders [47].

4.2 The p-Enrichment Step

Let �
h
denote the estimated error in the solution û

1
2 Vp

0
(P1) obtained in step

(ii). Treating the a priori estimate as an equality,

�2
h
=

X
K2P1

�2
h;K

=
X
K2P1

h
2�

K
K

p
2�

K
0

�2
K

(4:10)

which gives the constants �
K
on P1:

�
K
=
p
�
K

0

h
�
K

K

�
h;K

; K = 1; � � � ; N(P1) (4:11)

The error is reduced by constructing a distribution of polynomial orders,

p
1
, where the polynomial order of each element in P1 is selected to equally

distribute the target error. Setting �T = �T (jjû1jj
AU

+ �h) and using the a

priori estimate, we have

�2T =
X
K2P1

�2T;K =
X
K2P1

h
2�

K
K

p
2�

K
K

�2
K (4:12)
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where for an equally distributed error

�T;K =
�Tq
N(P1)

(4:13)

Combining (4.11), (4.12), and (4.13) yields the new value p
K
for each element

in P1:

p�K
K

=
p
�
K
0 �h;K

q
N(P1)

�T
(4:14)

For smooth solutions, the parameter �
K
in (4.12) depends on p

K
which

is unknown at this point. Here we use the value which is actually associated

with p0. More discussion on the parameters �
K
and nu

K
is given in section 4.4.

For discontinuous solutions, p-enrichments are con�ned to regions where

the solution is smooth since increasing p at discontinuities may result in os-

cillatory solutions and does not improve the accuracy of the approximation.

The local regularity of the solution on each element K 2 P0 is estimated by

computing the rate of convergence, �̂
K
, of the local error in steps (i) and (ii):

�̂
K
=

log �0;K � log
qPn

K

L=1 �
2
h;L

log h
K
� log

h
Kp
n
K

; K = 1; � � � ; N(P0) (4:15)

From the a priori estimate (2.42), the expected rate of convergence is p0+
1
2
if

the solution is smooth in K 2 P0. To prohibit p-enrichments in discontinuous

regions, we simply set p
L
= p

0
; L = 1; � � � ; n

K
if �̂

K
< p0 +

1
2 for the parent

element. The contribution of these elements to the global error therefore re-

mains �xed in the p-step of the adaptive strategy. If this contribution exceeds

the target �T , then an additional h-step is required before the p-step in order

to achieve the target error.
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4.3 An hp-step as an Alternative to the p-Step

For smooth solutions or for solutions which contain mild discontinuities, the

p-step should be adequate to reduce the global error to the speci�ed level. For

problems with strong discontinuities, however, the local error at discontinuities

may be signi�cantly large and dominate the global error obtained after the h-

step, particularly in the current implementation where a maximum of 2 levels

of re�nement are permitted.

An alternative to the p-step of the adaptive strategy is an hp-step where

h-re�nement is performed at the discontinuity and p-enrichment is performed

in smooth regions. In this case, the target error is speci�ed as a reduction factor

for the error in discontinuous regions and for the smooth region individually.

Let �
D
denote the normalized error in discontinuous regions and �

S
denote the

normalized error in smooth regions. Then the target error for the hp-step is

speci�ed by the reduction factors �
D
and �

S
as

�
T
=
q
(�

D
�
D
)2 + (�

S
�
S
)2 (4:16)

The criteria of �̂
K
< p0 +

1
2
, where �̂

K
is given by (4.15), is used to distin-

guish discontinuous regions from smooth regions. Equations (4.8) and (4.9),

with N(P0) replaced by the number of elements in the discontinuous region,

are used to determine the number of elements required to reduce the error in

discontinuous regions to �
D
�
D
. Equation (4.14), with N(P1) replaced by the

number of elements in the smooth region, is used to determine the values of

p
K
required to reduce the error in the smooth region to �

S
�
S
. This approach

is referred to as an hhp-adaptive strategy.
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4.4 Selection of the Parameters

Formally, the parameters �
K
and �

K
depend on the global regularity of the

solution. However, the rate of convergence of the local error depends on the

local regularity of the solution. For piecewise continuous solutions, the rate of

convergence of the local error varies greatly between the smooth regions of the

solution and some small neighborhood around discontinuities. Using global val-

ues of these parameters based on an irregular solution results in over-re�nement

of smooth regions while using global values based on smooth solutions results

in under-re�nement of discontinuities. Here we use local values of �
K
and

�
K
which are initially computed for a uniform h-re�nement and a uniform p-

enrichment of a coarse mesh. These local values are passed onto the initial

mesh used for the adaptive strategy. Local values of �
K
are then re-computed

after the h-step using (4.15). These are the values used in (4.12) for the p-

or hp-step. While there is little theoretical justi�cation for using local values,

numerical results indicate that the approach works quite well for solutions with

discontinuities.

Selection of the reduction factor � used to determine the intermediate

target error for the h-step of the adaptive strategy is important in obtaining an

optimal mesh. Specifying a value of � which gives an intermediate error which

is closer to the target error than it is to the initial error will result in meshes

with mostly h-re�nement. Specifying a value of � which gives an intermediate

target error which is closer to the initial error than it is to the target error

leads to meshes with little h-re�nement and elements with large values of p
K
.

Numerical experiments for elliptic problems suggest that the optimal choice is

� = �

�
, where � and � are the rates of convergence of the global error. [41]



Chapter 5

Numerical Examples

The discontinuous Galerkin method is used to solve several examples to verify

the a priori error estimates derived in Chapter 2, and to investigate the perfor-

mance of the the a posteriori error estimates of Chapter 3 and the hp-adaptive

strategy of Chapter 4. The reliability of the a posteriori error estimates is mea-

sured by the e�ectivity index which is the ratio of the estimated error to the

exact error. A reliable estimate is one for which the e�ectivity index is close to

one.

5.1 Example 1

We solve the linear model problem (2.1) with the following data:

(i) 
 = (�1; 1)� (�1; 1)

(ii) � = (0:8; 0:6)
T

(iii) a(x) = 1:0

(iv) g = 1:0

54
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Figure 5.1: Quadrilateral element mesh used for quasi-uniform re�nements.

The source term f is chosen so that the exact solution to (2.1) is the C1(
)

function,

u(x; y) = 1 + sin
�
�

8
(1 + x)(1 + y)2

�
(5:1)

The a priori error estimate (2.42) is veri�ed by solving the problem for a se-

quence of uniform h-re�nements and p-enrichments of a mesh of square elements

and quasi-uniform h-re�nements and p-enrichments of the mesh of quadrilat-

eral elements shown in Fig. 5.1. The mesh-dependent norm of the actual error

in the solution obtained with varying h and p is listed in Table 5.1 for the

square element mesh and in Table 5.2 for the quadrilateral element mesh.
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�log jjju� uhjjjhp;�
Mesh � log h p = 1 p = 2 p = 3 p = 4

2� 2 0.000 ||{ ||{ 1.8323 2.2787

4� 4 0.301 0.5552 1.7066 2.5426 3.6065

8� 8 0.602 0.9692 2.3909 3.5467 4.9612

16� 16 0.903 1.4003 3.1163 4.5834 6.3047

32� 32 1.204 1.8412 3.8574 ||{ ||{

Table 5.1: Example 1 - Error using uniform hp meshes.

�log jjju� uhjjjhp;�
Mesh � log h p = 1 p = 2 p = 3 p = 4

2 � 2 -0.2116 ||{ 0.8586 1.7402 2.2831

4 � 4 0.0689 0.5153 1.5930 2.5395 3.4998

8 � 8 0.347 0.9571 2.3641 3.5814 4.9723

16 � 16 0.641 1.3913 3.0955 4.6208 6.3196

32 � 32 0.938 1.8129 3.7870 ||{ ||{

Table 5.2: Example 1 - Error using quasi-uniform h and uniform p meshes.
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Figure 5.2: Example 1- Rate of convergence of error for �xed p.

To verify the estimate (2.42), �rst consider the case when p
K
is �xed

and h
K
is varied. According to (2.42), jjjejjjhp;� � Ch

p
K
+ 1

2
K jjujjr;
. This is

veri�ed in Fig. 5.2 where jjjejjjhp;� is shown as a function of h
K
. On the log-

log scale, the slope of the lines corresponding to a �xed value of p
K
is indeed

p
K
+ 1

2 for both the uniform and quasi-uniform meshes. Next consider the case

when h
K
is �xed and p

K
is varied. In this case, the estimate (2.42) reduces to

jjjejjjhp;� � Cp
K

�r+1jjujjr;
. Since u 2 C1(
), exponential rates of convergence

are expected. This is con�rmed in Fig. 5.3 where the curves corresponding to

jjjejjjhp;� as a function of p
K
have a slope on the log-log scale which increases

as p
K
increases. These results are combined in Fig. 5.4 where jjjejjjhp;� is

shown as a function of the total number of unknowns in the solution. The

solid lines represent h-re�nements for a �xed p and the dashed lines represent

p-enrichment for a �xed h. Clearly for smooth solutions, higher-order accuracy
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Figure 5.3: Example 1- Rate of convergence of error for �xed h.

is achieved for the same number of unknowns using higher-order elements.

Next we investigate the performance of the a posteriori error estimates

in Chapter 3. Recall that the complete polynomial space Q
p
K
+�

K (K) or the

incomplete space Q
p
K
+�

K (K)nQp
K (K); �

K
� 1 may be used in approximating

the solution to the local problem. The e�ect of approximating the local problem

on the performance of the error estimate for the lower bound (3.1) is shown in

Table 5.3. The e�ectivity indices listed in Table 5.3 are greater than one for all

values of �
K
when the complete polynomial space is used and less than one for

small values of �
K
when the incomplete polynomial space is used. Note that

the e�ectivity index is closest to one for the complete polynomial space with

�
K
= 1. The e�ect of approximating the local problem on the performance

of the error estimate for the upper bound (3.7) is shown in Table 5.4. The

e�ectivity indices for the upper bound estimate are signi�cantly larger than
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'̂
K
2 Qp

K
+�

K (K) '̂
K
2 Qp

K
+�

K (K) nQp
K (K)

Mesh p
K

�
K

�
L

�
L

8 � 8 1 1 1.0938 0.7628

8 � 8 1 2 1.1272 0.8921

8 � 8 1 3 1.1347 0.9788

8 � 8 1 4 1.1372 1.0175

16 � 16 1 1 1.1765 0.7933

16 � 16 1 2 1.2229 0.9492

16 � 16 1 3 1.2340 1.0465

16 � 16 1 4 1.2378 1.0898

8 � 8 2 1 1.1224 0.9555

8 � 8 2 2 1.2009 1.0711

Table 5.3: Example 1 - E�ect of the approximation of the local problem for
the lower bound on the e�ectivity index.
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Figure 5.4: Example 1- Rate of convergence of error with number of unknowns.

one when the complete polynomial space is used and close to one when the

incomplete polynomial space with �
K
= 1 is used to approximate the solution

to the local problem.

Next we verify that the error estimate exhibits the same rates of con-

vergence as the actual error with h-re�nement or p-enrichment. Based on

the results from above, the error is estimated by solving the lower bound lo-

cal problem in Q
p
K
+1

(K) and by solving the upper bound local problem in

Q
p
K
+1

(K) n Qp
K (K). The estimated error for a sequence of h-re�nements of

meshes with �xed p is shown as a function of the mesh size in Fig. 5.5. The

slope of the lines is p+ 1
2 as in the case of the actual error (see Fig. 5.2). The

estimated error for a sequence of p-enrichments of a uniform mesh is shown in

Fig. 5.6 where the same behavior as the actual error (see Fig. 5.3) is observed.
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 ̂
K
2 Qp

K
+�

K (K)  ̂
K
2 Qp

K
+�

K (K) nQp
K (K)

Mesh p
K

�
K

�
U

�
U

8 � 8 1 1 4.1911 1.0536

8 � 8 1 2 4.3603 1.3551

8 � 8 1 3 5.1297 2.0930

8 � 8 1 4 5.3218 2.6803

16 � 16 1 1 6.4441 1.1238

16 � 16 1 2 6.6729 1.4980

16 � 16 1 3 7.9048 2.8298

16 � 16 1 4 8.1157 3.6008

8 � 8 2 1 2.6353 1.1957

8 � 8 2 2 3.7052 1.4012

Table 5.4: Example 1 - E�ect of the approximation of the local problem for
the upper bound on the e�ectivity index.
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Figure 5.5: Example 1 - Rate of convergence of the estimated error with uniform
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Figure 5.6: Example 1 - Rate of convergence of the estimated error with uniform
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1.07

1.02

0.97

0.92

0.88

0.83

0.78

0.73

Figure 5.7: Example 1 - Local e�ectivity index for error estimate based on the
upper bound local problem. (8� 8 mesh, p = 1)

While the theory developed thusfar applies to global error estimates,

local e�ectivity indices near unity are desired in order to use the estimate to

drive an e�ective adaptive strategy. The local (element) e�ectivity index for

the error estimate based on the upper bound local problem (3.7) using the

incomplete polynomial space Q
p
K
+1

(K) nQp
K (K) is shown for a uniform 8� 8

element p = 1 mesh in Fig. 5.7, for a uniform 8� 8 element p = 2 mesh in Fig.

5.8, and for a uniform 16 � 16 element p = 1 mesh in Fig. 5.9. For all cases

investigated, the local e�ectivity index is close to one except in a few isolated

elements. This indicates that the error estimate is reliable enough to drive the

hp-adaptive strategy. Therefore, the solution to the upper bound local problem

on the incomplete polynomial space with �
K
= 1 will be used throughout to

drive the hp-adaptive strategy.
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Figure 5.8: Example 1 - Local e�ectivity index for error estimate based on the
upper bound local problem. (8� 8 mesh, p = 2)
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Figure 5.9: Example 1 - Local e�ectivity index for error estimate based on the
upper bound local problem. (16 � 16 mesh, p = 1)
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Estimated Error

9.3E-2

8.2E-2

7.1E-2

6.0E-2

4.9E-2

3.8E-2

2.8E-2

1.7E-2

Figure 5.10: Example 1 - Error distribution on initial mesh.

The results of applying the adaptive strategy described in Chapter 4

to this problem are summarized in Table 5.5. The normalized error listed in

the table is the ratio of the global error to the sum of the global solution and

the error in the norm associated with the local problem. Starting with the

estimated error on an initial mesh of 4� 4 p = 1 elements, shown in Fig. 5.10,

a target error of 1.5 percent is speci�ed. An estimated error of 1.2 percent is

actually achieved on the resulting h-adapted mesh (see Fig. 5.11). For the

p-step of the adaptive strategy, a target error of 0.1 percent is speci�ed. An

estimated error of 0.11 percent is actually achieved on the p-adapted mesh (see

Fig. 5.12). The distribution of the error on the adapted meshes, shown in Figs.

5.11 and 5.12, is also reduced by an order of magnitude at each adaptive step.
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Figure 5.11: Example 1 - Mesh and error distribution after the h-step.
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Figure 5.12: Example 1 - Mesh and error distribution after the p-step.
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5.2 Example 2

We solve the linear model problem (2.1) with the following data:

(i) 
 = (�1; 1)� (�1; 1)

(ii) � = (1:0; 0:0)
T

(iii) a(x) = 1:0

(iv) g =

(
3e�5(1+y

2) if y < 0

�3e�5(1+y2) otherwise

The source term f is chosen so that the exact solution to (2.1) is the discon-

tinuous function,

u(x; y) =

(
3e�5(x

2+y2) if y < 0

�3e�5(x2+y2) otherwise
(5:2)

The discontinuity is aligned with element interfaces at y = 0 to illustrate the

advantage of using a discontinuous method to capture discontinuities, particu-

larly if the adaptive scheme includes some shock �tting which aligns the grid

with the discontinuity.

The problem was solved using a variety of uniform meshes with h-

re�nements, p-enrichments, and the hp-adaptive strategy with no special treat-

ment at the shock. The error histories for two hp-adaptive solutions with dif-

ferent initial meshes are listed in Tables 5.6 and 5.7. For both cases, the target

error was achieved at each step in the adaptive process. Note also that the

global e�ectivity index is near unity for all steps.

The rate of convergence of the estimated and exact error is compared

in Fig. 5.13. The exact error (denoted by a solid line in the �gure) and the
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Achieved

Adaptive Target Exact Estimated normalized

step normalized error error estimated

error jjejj
A
U

jj jj
A
U

error
jj jj

A
U

jjûjj
A
U
+jj jj

A
U

Initial 4 � 4 p = 1 mesh || 0.1663 0.2078 0.03786

h-re�nement 0.015 0.03619 0.03847 0.012105

p-enrichment 0.001 0.00377 0.00355 0.001116

Table 5.5: Example 1 - Error history for an adaptive hp solution.

Target Achieved Estimated

Adaptive normalized normalized error E�ectivity

step error error jj jj
A
U

index

Initial 4� 4 mesh, p = 2 || 0.091 0.371 1.055

h-re�nement 0.05 0.031 0.127 1.073

p-enrichment 0.005 0.0029 0.012 1.424

Table 5.6: Example 2 - Error history for an adaptive hp solution starting from
a uniform 4� 4 mesh, p = 2.
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Target Achieved Estimated

Adaptive normalized normalized error E�ectivity

step error error jj jj
A
U

index

Initial 8� 8 mesh, p = 1 || 0.154 0.616 0.998

h-re�nement 0.075 0.033 0.137 0.996

p-enrichment 0.005 0.0055 0.023 0.901

Table 5.7: Example 2 - Error history for an adaptive hp solution starting with
a uniform 8� 8 mesh, p = 1.

estimated error (denoted by a dashed line) are in close agreement, indicating

the reliablilty of the estimate. Note that with the discontinuity aligned with

element interfaces, the error behaves as if the solution is smooth, that is, alge-

braic rates of convergence are achieved with respect to mesh re�nements, and

exponential rates of convergence are achieved with respect to p-enrichments.

In this case, the most signi�cant error reduction with fewest degrees of freedom

will result by specifying a target error for the h-step which is closer to the initial

error than to the �nal target error. This is veri�ed by the two curves corre-

sponding to the hp-adaptive solutions in Fig. 5.13. Results of the hp-adaptive

solution from the initial 8 � 8 element p = 1 mesh are shown in Figs. 5.14 -

5.20. The estimated error in the solution on the initial mesh is shown in Fig.

5.14 with the corresponding e�ectivity index shown in Fig. 5.15.

For the h-step in the adaptive procedure, a normalized target error of

7.5 percent resulted in the mesh shown in Fig. 5.16. The estimated error in

the solution obtained on the h-adapted mesh is also shown in Fig. 5.16 and

the corresponding e�ectivity index is shown in 5.17. Poor local error estimates
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Figure 5.13: Example 2 - Rate of convergence of the error with respect to the
total number of unknowns.

are observed in the two parallel vertical regions indicated by the darker shades

in Fig. 5.17. Moreover, the local error is signi�cantly underestimated in these

regions, possibly due to a failure of the procedure to adequately handle the

very high changes in gradients in these regions. The global e�ectivity indices,

however, are quite satisfactory with e�ectivity indices very near unity.

For the p-step, a normalized target error of 0.5 percent resulted in the

distribution of p shown in Fig. 5.18. The estimated error for the solution

obtained on the hp-mesh and corresponding local e�ectivity index are shown

in Figs. 5.19 and 5.20. The same degradation of the local e�ectivity indices are

observed in the regions where u� is large. Moreover, there is a slight decrease in

the global e�ectivity index, however, the global value is still quite acceptable.
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Figure 5.14: Example 2 - Estimated error on initial 8� 8 mesh, p = 1.
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0.72

Figure 5.15: Example 2 - Local e�ectivity index for error estimate on initial
8� 8 mesh, p = 1.
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0.0257

0.0221

0.0185

0.0149

0.0113

0.0077

0.0041

0.0005

Figure 5.16: Example 2 - Estimated error on h-adapted mesh.
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0.8229
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0.3486

0.2300

Figure 5.17: Example 2 - Local e�ectivity index for error estimate on h-adapted
mesh.
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Figure 5.18: Example 2 - Adaptive p-enriched mesh.

0.0035
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Figure 5.19: Example 2 - Estimated error on adaptive p-enriched mesh.



76

1.6377

1.4361

1.2346

1.0330

0.8315

0.6299

0.4284

0.2269

Figure 5.20: Example 2 - Local e�ectivity index on adaptive p-enriched mesh.

5.3 Example 3

The following data is used in (2.1):

(i) 
 = (�1; 1)� (�1; 1)

(ii) � = (
p
2
2 ;

p
2
2 )

T

(iii) a(x) = 1:0

(iv) g(x; y) =

(
5e�[

1
4
+y2 ] + 3e�[1+(y�

1
2
)2] x = �1

�1� 8e�5[(x�
1
2
)2+ 1

4
] y = �1

The source term f in (2.1) is chosen so that the exact solution is a function

which is discontinuous along the domain diagonal given by

u(x; y) =

(
5e�[(x+

1

2
)2+y2] + 3e�[x

2+(y� 1

2
)2] if y > x

�1� 8e�5[(x�
1

2
)2+(y+ 1

2
)2] otherwise

(5:3)



77

The global e�ectivity index for the estimate obtained by solving the

upper bound local problem in the space Qp
K
+1(K)nQp

K (K) for several uniform

hp meshes is listed in Table 5.8 which shows that the global error is slightly

under-estimated. Results at each step in the adaptive strategy, shown in Figs.

5.21 - 5.27, show that the under-estimation of the global error is primarily due

to the under-estimation of the local error at the discontinuity. A summary of

the hp-strategy is listed in Table 5.9. Note that while the adaptive strategy is

able to reduce the error to the target value in the h-step, the achieved error

after the p-step largely represents the remaining error in the discontinuity after

the h-step.

The error achieved by the adaptive strategy is compared to uniform

re�nements of p = 1 and p = 2 meshes in Fig. 5.28. This plot shows that

the rate at which the error is reduced in the p-step is much higher than is

possible using h�re�nements alone. Moreover, the main source of the error in

the �nal solution is attributed to the discontinuity (see Fig. 5.26. In Chapter

6, we solve a similar problem on a parallel computer and use the hhp-adaptive

strategy described in Chapter 4 to reduce the error in solution over the entire

domain.

5.4 Example 4

The following data is used for (2.1):

(i) 
 is an equilateral triangle with side length of 2 and the base al-

ligned with the x-axis

(ii) � = (
p
2
2 ;

p
2
2 )

T
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Mesh p
K
jj ̂jjAU jjejjAU �

U

4 � 4 1 3.01325 3.81716 0.79

4 � 4 2 1.49536 1.97645 0.76

8 � 8 1 1.62507 2.10238 0.77

8 � 8 2 0.82209 1.35611 0.61

16 � 16 1 0.88158 1.37317 0.64

16 � 16 2 0.63044 1.00438 0.63

32 � 32 1 0.85472 1.01102 0.85

Table 5.8: Example 3 - Error estimate obtained by approximating the upper
bound local problem in Qp

K
+1(K) nQp

K (K).

Target Achieved Estimated

Adaptive normalized normalized error E�ectivity

step error error jj jj
A
U

index

Initial 8� 8 element p = 1 mesh |{ 0.118 1.625 0.77

h-re�nement 0.05 0.048 0.673 0.63

p-enrichment 0.03 0.038 0.541 0.55

Table 5.9: Example 3 - Error history for an adaptive hp solution starting from
a uniform 8� 8 mesh, p = 1.
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0.5103

0.4482

0.3862

0.3241

0.2620

0.2000

0.1379

0.0759

Figure 5.21: Example 3 - Estimated error on initial 8� 8 mesh, p = 1.

1.08

0.99

0.89

0.80

0.70

0.61

0.51

0.42

Figure 5.22: Example 3 - Local e�ectivity index on initial 8� 8 mesh, p = 1.
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0.1032

0.0903

0.0774

0.0645

0.0516

0.0388

0.0259

0.0130

Figure 5.23: Example 3 - Estimated error on h-adapted mesh.

1.67

1.48

1.29

1.11

0.92

0.73

0.54

0.35

Figure 5.24: Example 3 - Local e�ectivity index on h-adapted mesh.
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Figure 5.25: Example 3 - Final p-adapted mesh.
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Figure 5.26: Example 3 - Estimated error on adaptive p-enriched mesh.
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Figure 5.27: Example 3 - Local e�ectivity index on adapive p-enriched mesh.
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Figure 5.28: Example 3 - Rate of convergence of the error with respect to the
number of unknowns.
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(iii) a(x) = 1:0

The source term f in (2.1) is chosen so that the exact solution is a

u(r) = sin 5rftan�1 100 + tan�1[100(r � 1)]g (5:4)

where

r2 = (x+ 0:1)2 + 4y2

The in
ow boundary conditions are obtained by evaluating the exact solution

along the in
ow boundary

g(r) =

(
u(r) r2 = (x+ 0:1)2 on y = 0
u(r) r2 = (x+ 0:1)2 + 4 tan2(�

3 )x
2 on y = tan(�3 )x

The error history for an hp-adaptive solution is listed in Table 5.10 and the

resulting meshes, local error estimates, and local e�ectivity indices are shown

in Figs. 5.29 - 5.35.

While the exact solution to this problem is continuous, it contains a

very steep front which can be seen as the dark regions in Fig. 5.29. The global

e�ectivity indices listed in Table 5.10 demonstrate the reliablility of the error

estimate on non-rectangular meshes. The local e�ectivity indices for all the

meshes are close to unity over most elements, however, there is some slight

under-estimation of the error for the uniform p-meshes. Though it is di�cult

to see from the �gure, the under-estimation of the error occurs in the region of

the steep front. There is also some rather severe over-estimation of the error

on the p-adapted mesh. This over-estimation occurs primarily in the p = 5

elements and does not have a signi�cant e�ect on the global e�ectivity of the

error estimate.
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Target Achieved Estimated

Adaptive normalized normalized error E�ectivity

step error error jj jj
A
U

index

Initial mesh p = 1 || 0.130 2.514 0.87

h-re�nement 0.075 0.029 0.641 1.027

p-enrichment 0.003 0.0025 0.559 1.028

Table 5.10: Example 4 - Error history for an adaptive hp solution.

0.6833

0.5979

0.5125

0.4271

0.3417

0.2562

0.1708

0.0854

Figure 5.29: Example 4 - Estimated error on initial mesh, p = 1.
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1.36
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0.77

0.62

0.48

0.33

Figure 5.30: Example 4 - Local e�ectivity index on initial mesh, p = 1.

0.0960

0.0840
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0.0240

0.0120

Figure 5.31: Example 4 - Estimated error on h-adapted mesh.
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Figure 5.32: Example 4 -Local e�ectivity index on h-adapted mesh.
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Figure 5.33: Example 4 - p-adapted mesh.
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0.1027

0.0898

0.0770
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0.0513

0.0385

0.0257

0.0128

Figure 5.34: Example 4 - Estimated error on p-adapted mesh.
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1.33

Figure 5.35: Example 4 - Local e�ectivity index on p-adapted mesh.



Chapter 6

Parallel Implementation

The time-marching versions of the discontinuous Galerkin methods, (2.54),

(2.55), and the Runge-Kutta discontinuous Galerkin method described in the

next Chapter, fall naturally into the class of single program multiple data

(SPMD) parallel applications. Given the solution at time level tn, the solution

is advanced to time level tn+1 by solving a (p
K
+ 1)2 � (p

K
+ 1)2 system of

linear equations for the (p
K
+1)2 degrees of freedom for every elementK in the

partition. The only coupling between elements in the partition arises in the

evaluation of the boundary integrals in (2.8) where the solution along common

edges of neighboring elements is needed. The evolution of the solution can be

performed on all the elements simultaneously, once this information is available.

The primary issue in a parallel implementation of discontinuous Galerkin

methods is to balance the workload among the available processors while min-

imizing the communication between processors, thereby optimizing the utiliza-

tion of the multi-processor environment. For a machine with P processors,

this is accomplished by dividing the partition into P subdomains and assigning

the elements contained in a particular subdomain to a particular processor.

In order to minimize communications, the interface of the subdomain bound-

aries should have as small a measure as possible. Moreover, the local nature

88
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of the discontinuous Galerkin formulation requires communication of the solu-

tion only along subdomain boundaries at each time step. Since computations

are performed at an element level, communications can be overlapped with

the computation to further minimize the penalty of communicating between

processors.

While the parallel implementation described in this Chapter is targeted

for the Intel iPSC 860 computer which is a distributed memory machine with

32 processors arranged in a hypercube architecture, many concepts are general,

and, therefore applicable to other multi-processor machines.

6.1 Domain Decomposition for hp Meshes

The goal of the domain decomposition strategy is to evenly distribute the work-

load among the processors while minimizing the size of the subdomain bound-

aries. Most domain decomposition methods have been developed and analyzed

for h-type meshes where the number of degrees of freedom, and hence the com-

putational e�ort, is the same for every element in the mesh. For these types of

meshes, equally distributing the elements among the available processors will

result in a balanced load.

The most successful domain decomposition methods in this situation

are based on recursive bisectioning of either the physical domain or an order-

ing of the elements. In the recursive bisectioning of the physical domain, trial

separators de�ne possible subdomain con�gurations. The selection of a sepa-

rator as a subdomain interface is based on the resulting load balance as well as

interface size. Vavasis [52] has obtained theoretical bounds on the achievable

load balance and interface size. One disadvantage of this approach is that it
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can be computationally expensive for multiple space dimensions.

Recursive bisectioning methods based on an ordering of the elements

have a computational advantage since the bisectioning is performed on a one-

dimensional list of elements, regardless of the spatial dimension of the domain.

One di�culty with this approach is constructing an ordering which preserves

the locality of the elements in the mesh. A locality-preserving ordering is neces-

sary to avoid multiply connected or disconnected subdomains and to minimize

interface size. Pothen, Simon, and Liou [45] construct such an ordering by

using the second eigenvector of the Laplacian matrix associated with the graph

of the mesh.

For hp meshes, where the number of degrees of freedom (and hence the

computational e�ort) vary from element to element, the domain decomposition

must include some measure of the computational work for each element. Here

we investigate two load-based recursive bisection methods developed by Patra

[40] which seek to balance the load using some local measure of the computa-

tional work. In this study, the number of degrees of freedom in an element,

(p
K
+ 1)2, are used as a measure of its computational load.

6.1.1 Recursive Load Based Bisection of Coordinates (RLBBC)

An algorithm for this method which is based on recursive bisectioning of the

physical domain is given below.

�K: computational e�ort estimate for element K, �K speci�ed as dof in

the description of the algorithm. It may be replaced by any alternate measure

of computational e�ort.
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DI : list of elements in subdomain I.

nl : number of trial separator surfaces.

qi : quality index for a trial separator.

1. Compute maximumand minimumcoordinates in any one of the dimensions

of the entire domain x1min; x1max

For i = 1 to nl do

2. compute

x1i = x1min +
(x1max�x1min)

ni

qi =
dofleft

dofright
� doftot + dofinter

where dofleft and dofright are the degrees of freedom to the left and right

of x1i, respectively, and dofinter is the degrees of freedom on the trial

separator x1i.

3. Choose as interface the separator corresponding to the lowest qi.

4. If the center of mass of element has an x1 coordinate less than that of the

interface then

D1  D1 [ fKg

Else

D2  D2 [ fKg

At this stage, the original domain has been split into two.

5. For the next level of decomposition apply steps 1-4 with D1 and D2 instead

of the entire domain and with x2 as the coordinate. This will result in
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four subdomains. In three-dimensions, for the next level use 1-4 with

these four subdomains and with x3 as the coordinate. This process is

recursively continued until the desired number of domains is attained.

Clearly, for better shaped domains, equal numbers of splits in each coor-

dinate must be made. Thus, for two dimensions, 4n subdomains and in

three dimensions, 8n subdomains are obtained.

6.1.2 Recursive Load Based Bisection of an Ordering (RLBBO)

This method is based on recursive bisectioning of an ordering of the elements.

The ordering is based on results of Peano[42] and Hilbert[27] concerning a

class of continuous mappings of the unit interval onto a unit hypercube. The

signi�cance of their results is that one can construct a space �lling curve which

connects a set of points in n-dimensional space and uniqely maps them onto the

unit interval. Applying this mapping to the set of points given by the element

centroids, results in an ordering of the elements de�ned by its location on the

unit interval. Complete details of the Peano-Hilert ordering and proof that it

is locality-preserving can be found in Patra [40].

An algoritm for this method follows:

hn : < ! Un, where UI is a the unit interval and Un is the unit hyper-

cube.

DI : list of elements in subdomain I.

nl : number of trial separator surfaces.

qi : quality index for a trial separator.

1. Create an ordering of the elements by mapping the centroids of the ele-
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ments onto a Peano-Hilbert curve. (See [40])

2. Let tK be the distance of the centroid of element K along the space �lling

curve.

3. Compute maximum and minimum of tK, tmax and tmin.

4. Compute nl trial separator levels as

ti = tmin +
tmax � tmin

nl

5. For each ti compute a quality of interface index qi

qi = abs(
dofleft

dofright
� 1) � doftot + dofinter

Replace dof by error or other load estimate as appropriate.

6. Choose as interface tint the ti that corresponds to lowest qi

7. For K = 1 to the total number of elements

If tK � tint then

D1  D1 [ fKg

else

D2  D2 [ fKg

end if

end for

At this stage, the original domain has been split into two.

8. Apply 1-7 recursively on each of the generated subdomains.
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6.2 Communications

Communication between processors on distributed memory machines can sig-

ni�cantly e�ect the overall performance of the parallel implementation, partic-

ularly if a processor must wait to receive information from another processor

before proceeding with a calculation. To compute the solution at time level tn+1

on a particular subdomain, the solution at tn is needed from interface elements

on neighboring subdomains. Using synchronous communications, that is, re-

questing information from neighboring processors at the time that it is needed,

leads to unnecessary waiting by all processors. Moreover, communication con-


icts are likely to occur since two-way communication is required across interior

subdomain boundaries. Asynchronous communications are used to minimize

this wait time. When the solution for an interface element is computed on a

processor, it is then sent to the processor containing the neighboring element.

6.3 Numerical Results

Results are presented for an hhp-adaptive solution to an example similar to

example 3 in Chapter 5, except that the source term f is selected so that the

exact solution is

u(x; y) =

(
5e�[(x+

1

2
)2+y2] + 3e�[x

2+(y� 1

2
)2] if y > x

�1� 5e�5[(x�
1

2
)2+(y+ 1

2
)2] otherwise

(6:1)

The error history obtained with the hhp-adaptive strategy described in

Chapter 4 is listed in Table 6.1 which shows that this approach is very e�ective

at reducing the global error in the discontinuous solution. These results are

compared graphically with results from Chapter 3 in Fig. 6.1. Note the sig-

ni�cant decrease in the error due to the additional h-re�nement at the shock.
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Target Achieved Estimated

Adaptive normalized normalized error E�ectivity

step error error jj jj
A
U

index

Initial 8� 8 mesh, p = 1 || 0.126 1.391 0.72

h-re�nement 0.0628 0.0759 0.861 0.69

p-enrichment 0.0558 0.0311 0.359 0.53

Table 6.1: Error history for an hhp-adaptive solution starting from a uniform
8� 8 mesh, p = 1.

While this adaptive strategy leads to signi�cantly more unknowns in the prob-

lem, the reduction in the error, when compared to error obtained by uniform

h-re�nements of a mesh of p = 1 or p = 2 elements, is orders of magnitude.

The �nal hp mesh, shown in Fig. 6.2, is particularly demanding for a domain

decomposition method because of the concentration of elements resulting from

4 levels of re�nement in the lower left quadrant of the domain and the large p

elements in the smooth regions.

We use the speedup as a measure of the e�ectiveness of the domain

decomposition startegy at balancing the load. The speedup is de�ned here as

the ratio of the CPU time required to obtain the solution using 4 processors

to the CPU time required to obtain the solution using n processors, where

n � 4. Ideal (also called linear) speedup implies that the work load is equally

balanced among the processors and is indicated by a slope of two on a graph of

the speedup as a function of the number of processors. The speedup obtained

on the hp-mesh using the two decomposition strategies is shown in Fig. 6.3.

Nearly optimal speedup of 1.8 is obtained using the RLBBCmethod when going
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Figure 6.1: Rate of convergence of the error with respect to the total number
of unknowns.

from 4 to 8 processors. The speedup drops o� as the number of processors

increases, indicating that the load is unbalanced. The speedup of 1.3 when

going from 4 to 8 processors when using the RLBBO method indicates that

the method yields very poor load balancing when only a few processors are

used. Fortunately, the RLBBO method provides more balanced loads for a

larger number of processors where a speedup of 1.85 is achieved when going

from 8 to 16 processors.
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Figure 6.2: Final mesh using the hhp-adaptive strategy.
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Chapter 7

Extensions to Nonlinear Hyperbolic

Conservation Laws

In this chapter, we describe extensions of the discontinuous Galerkin method to

nonlinear hyperbolic conservation laws of the form (1.5) on convex polygonal

domains. For simplicity, the method is described for a two-dimensional scalar

conservation law written as

ut +r � q(u) = 0 (x; y) 2 
 � <2; t > 0 (7:1)

where q(u) = f1(u) i+f2(u) j denotes the 
ux vector. For a description of the

method for hyperbolic systems of conservation laws, in particular, the Euler

equations of gas dynamics, see Bey and Oden[6].

To complete the initial boundary-value problem, (7.1) is accompanied

by initial conditions

u(x; y; 0) = u0(x; y); (x; y) 2 
 (7:2)

and boundary conditions of the form

u(x; y; t) = d(t); (x; y) 2 �� (7:3)

where �� is the in
ow boundary, �� = f(x; y) 2 @
 : @q

@u
� n < 0g , n is the

outward unit normal to the boundary (@
 = �� \ �+), and d(t) is prescribed

in
ow data.

99
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The version of the discontinuous Galerkin method used here, �rst pro-

posed by Cockburn and Shu [13], [12], is based on the method of lines. The sys-

tem of ordinary di�erential equations resulting from the discontinuous Galerkin

spatial approximation is marched in time using a multi-stage Runge-Kutta

scheme. A local projection is used at each stage to control oscillations and

prevent nonlinear instabilities. In reference [13], a projection is constructed

for p = 1 and p = 2 elements in one space dimension and possible extensions

to higher-order elements are proposed. In reference [12], some important the-

oretical results are derived for multi-dimension problems, but a projection is

constructed and veri�ed only for linear p = 1 triangles. Moreover, the emphasis

of their work is in predicting element mean values, and while the high-order

solution is available, it is ignored in the presentation of numerical results. Here

we construct a very simple projection for general quadrilateral (or triangular)

elements of arbitrary order and take full advantage of the �nite element approx-

imation. For alternate projection strategies for quadrilaterals, we refer to Bey

and Oden [6] and to Biswas, Devine, and Flaherty [7] for a general projection

strategy on Cartesian grids.

7.1 Discontinuous Galerkin Spatial Approximation

The primary di�erence in the discontinuous Galerkin formulation for nonlinear

conservation laws is the treatment of the boundary 
uxes at element interfaces

and the need for the projection to control oscillations. Recall that for the linear

conservation law q(u) = �u and hence dq

du
� nK = � � nK < 0, which de�nes

element in
ow boundaries, is known a priori. For the nonlinear conservation

law, dq
du
� nK is a function of u and is thus unknown.
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The discontinuous Galerkin spatial approximation is de�ned on a par-

tition of the domain satisfying the properties in Chapter 2 (except property

(v) de�ning element in
ow boundaries) and solutions are sought in the �nite

dimensional space Vp(Ph) = fv 2 L1(
) j vj
K
2 Qp

K (K)g. The weak form of

(7.1) on a single element is obtained by multiplying by a test function v(x) and

integrating the �rst-order spatial term by parts:

Find u(x; t)j
K
2 L1(K)� C1(0; T ) such that

Z
K
u(x; 0)v(x)dx =

Z
K
u0(x)v(x)dx and (7:4)

d

dt
(u; v)

K
�
Z
K
q(u) � rvdx+

Z
@K

q(u) � nKv ds = 0 (7:5)

for all admissible test functions v(x).

The element boundary 
ux q(u) � nK in (7.5) is not uniquely de�ned

when replacing u by its approximation uph 2 Vp(Ph). Since uph is discontinuous
across element interfaces, q(uph) �nK has two values on @K, one associated with

uph on the interior of elementK and one associated with uph on the exterior of the

element. The ambiguity in evaluating the boundary 
ux in (7.5) is eliminated

by replacing it with a numerical 
ux function:

h
K;e

= h
K;e
(up;int(K)

h ; u
p;ext(K)
h )

where u
p;int(K)
h = u

p
h(x; y; �)jedge e of element K

u
p;ext(K)
h =

8><>:
uph(x; y; �)jedge e of element Ke

; @K \ �� = 0

d(t); @K \ �� 6= 0

The numerical 
ux function is required to have certain properties to

enhance the convergence properties of the approximate solution:
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1. h
K;e
(up;int(K)

h ; u
p;ext(K)
h ) is a monotone 
ux function, i.e. h

K;e
is non-

decreasing in u
p;int(K)
h and non-increasing in u

p;ext(K)
h

2. h
K;e
(�; �) is consistent, i.e., h

K;e
(u; u) = q(u) � n

K;e

3. h
K;e
(up;int(K)

h ; u
p;ext(K)
h ) is Lipschitz continuous

4. h
K;e
(up;int(K)

h ; u
p;ext(K)
h ) is directionally consistent in the sense that

h
K;e
(up;int(K)

h ; u
p;ext(K)
h ) = �h

Ke;e
(up;int(Ke)

h ; u
p;ext(Ke)
h )

Note that this last property enforces continuity of the normal 
ux at element

interfaces. Any function which satis�es the properties listed above can be used

in this numerical scheme. Some examples of 
uxes satisfying these conditions

are the numerical 
uxes of Godunov [23], Enquist-Osher [17], and Roe [46].

The semi-discrete problemwhich results from the discontinuous Galerkin

approximation to (7.1) can now be written for a typical element K 2 Ph:

Find uph(x; t)jK 2 Qp
K (K)� C1(0; T ] such that

Z
K
u
p
h(x; 0)jKv(x)dx =

Z
K
u0(x)v(x)dx and

d

dt

Z
K
u
p
h(x; t)v(x) dx dy =

Z
K
q(uph(x; t)) � rv(x)dx

� X
e2@Kn@


Z
e
h
K;e
(up;int(K)

h ; u
p;ext(K)
h )v ds

� X
e2@K\��

Z
e
h
K;e
(u

p;int(K)
h ; d(t))v ds

� X
e2@K\�+

Z
e
q(uph) � nK;e

v ds (7.6)

for every v(x) 2 Qp
K (K)
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Note that the integral over the element boundary is represented as the sum

of integrals along element edges where n
K;e

denotes the outward unit normal

to edge e of element K. For the linear conservation law, (7.6) reduces to the

methods (2.54) and (2.55) provided that the numerical 
ux reduces to

h
K;e
(u

p;int(K)
h ; u

p;ext(K)
h ) =

1

2
(u

p;int(K)
h + u

p;ext(K)
h )� � n

K;e

� 1

2
j� � n

K;e
j(up;ext(K)

h � up;int(K)
h )

when q(u) = �u.

7.2 Runge-Kutta Time Discretization

The system of ordinary di�erential equations in (7.6) can be discretized in time

using one of many time marching schemes, e.g. forward Euler, backward Euler,

or some predictor-corrector method. These schemes combinedwith acceleration

techniques, e.g. local time-stepping or multigrid, are good choices for problems

where only the steady-state solution is of interest. For truly time-accurate

solutions, however, it is necessary to have the order of accuracy of the time

discretization to be equal to the order of accuracy of the spatial approximation.

Using classical interpolation-type error estimates, Cockburn et. al. [12] show

that the Galerkin spatial approximation with uniform p elements satis�es the

estimate

jjLh(uph) +r � q(uph)jjL1(
) � Ch(p+1)jq(u)jW p+2;1(
) (7:7)

where we have used the abstract notation of Cockburn, Hou, and Shu [12] to

represent (7.6),

d

dt
uph(x; t)jK = Lh(u

p
h(x; t)jK ) (7:8)
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which formally requires the inversion of the (p
K
+ 1) � (p

K
+ 1) mass matrix

in (7.6). Runge-Kutta methods can be used to obtain a time marching scheme

for which the truncation error is of order �t(pK+1) for uphjK 2 Qp(K).

Let �t denote the time step increment and assume the approximate

solution uph(x; tn); tn = n�t is known. We use a special class of explicit Runge-

Kutta schemes written in the classical form as

uph(x; tn+1) = uph(x; tn) +
sX
i=1

biki

where ki = �tLh(u
p
h(x; tn) +

i�1X
j=1

aijkj) (7.9)

which is represented by the Butcher-array [9]

0
c2 a21
...

...
. . .

cs as1 � � � as;s�1
b1 � � � bs

where ci =
Pi�1
j=1 aij de�ne the abscissa ti = tn + ci�t for a non-autonomous

system which would result, for example, if the conservation law contained a

time-dependent source term. The special class of schemes can be written in

multi-stage form as

u(0) = u
p
h(�; tn)

u(i) = �h

i�1X
k=0

[�iku
(k) +�t�ikLh(u

(k))]; i = 1; :::; s (7.10)

u
p
h(�; tn+1) = u(s)

where �ik and �ik are free parameters and �h denotes a projection operator

to be discussed later. For consistency, �ik � 0 and
Pi�1
k=0 �ik = 1. We use the
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Order � �ik �ik Classical form

2 1.0
1

1
2

1
2

1

0 1
2

0

1 1

1
2

1
2

3 1.0

1

3
4

1
4

1
3 0 2

3

1

0 1
4

0 0 2
3

0

1 1

1
2

1
4

1
4

1
6

1
6

1
6

4 1.5

1

1
2

1
2

1
9

2
9

2
3

0 1
3

1
3

1
3

1
2

�1
4

1
2

�1
9
�1

3
1

0 1
6 0 1

6

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

Table 7.1: Parameters for the TVBM Runge-Kutta scheme

parameters listed in Table 7.1 which were derived by Shu [48] to result in a time

discretization that is TVD (Total Variation Diminishing) when combined with

�nite di�erence schemes in one space dimension. For multiple space dimensions,

the parameters listed in Table 7.1 result in a scheme which is TVBM (Total

Variation Bounded in the Means) as de�ned in the following lemma.

Lemma 9 (Cockburn, Hou, and Shu [12])

Let a0 = inf
x2


u0(x)
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b0 = sup
x2


u0(x)

�unK
def
=

1

jKj
Z
K
uph(x; tn)jK dx

wph
def
= uph + � �tLh(u

p
h) (7.11)

where � > 0 is a parameter. Suppose that the operator Lh satis�es the following

maximum principle:

�uK 2 [a; b]! �wK 2 [a�Bh�
K
; b+Bh�

K
] (7:12)

where � and B are non-negative parameters. Then the Runge-Kutta time dis-

cretization de�ned by (7.10) is Total Variation Bounded in the Mean, i.e.,

�unK 2 [a0 � snBh�
K
; b0 + snBh�

K
] (7:13)

Proof: By induction. See Cockburn, Hou, and Shu [12] for the case when

� = 2. The case when � is arbitrary follows directly.

Remarks:

(i) The second- and third-order schemes in Table 7.1 require little stor-

age since at each stage there is only one non-zero parameter �.

(ii) The fourth-order scheme is the classical fourth-order Runge-Kutta

method. For this and higher-order schemes, nearly all intermediate

solutions must be stored since most of the parameters are non-zero.
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7.3 Enforcing the Maximum Principle

A crucial step in the proof of the TVBM property is the assumption that the

spatial operator satis�es the maximum principle (7.12). The local projection,

�h in (7.10), is designed to enforce the maximum principle by modifying the

solution at each stage in the Runge-Kutta scheme. Cockburn, Hou, and Shu [12]

derive conditions on the solution on the boundary of an element so that (7.12)

is satis�ed. These condition are expressed as limits on the deviation of the

solution on an element boundary from its mean values based on the di�erence

between the element mean and the mean values in neighboring elements. The

"stencil" of elements used to de�ne these limits includes neighboring elements

as well as neighbors of neighboring elements. (See [12] or [6].) Note that (7.12)

enforces the TVB property on solution mean values; it says nothing about

the actual solution in an element. Moreover, values on the boundary of an

element are insu�cient to de�ne a p-unisolvent element. Here we use a simple

projection strategy which overcomes some of these di�culties.

The overall strategy for the local projection is as follows:(1) identify

elements in the neighborhood of a shock as those where the jump in the solution

along the element boundary [[uph]] � h
K
; (2) If p

K
> 1, perform an intermediate

projection P : Qp(K) ! Q1(K) (for p
K
= 1, P is the identity operator); (3)

perform a local projection, �
K
, on the result of step (2) to enforce the following

condition:

�KP (u
p
hjK) 2 [min(�uK; �uKe; e 2 @K);max(�uK; �uKe; e 2 @K)] ; 8x 2 K (7:14)

These conditions are the multi-dimensional extension of those used by Van

Leer [51] in one space dimension and are identical to those used by Barth [5]
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in reconstructing piecewise linear polynomials from mean values in his higher-

order �nite volume schemes.

The limits in (7.14) can also be written in terms of the deviation of the

solution from its mean value. Denoting the deviation from the mean by ~uK

where uphjK = �uK + ~uK, (7.14) becomes

g�KP (u
p
hjK ) 2 [min

e2@K
(0; �uKe � �uK);max

e2@K
(0; �uKe � �uK)] ; 8x 2 K (7:15)

In order to maintain conservation, the projection must also preserve the mean

value,

�KP (u
p
hjK ) = �uK (7:16)

7.3.1 The Projection P : Qp(K)! Q1(K)

There are several choices for the projection of a higher-order solution onto

the space of bilinear shape functions; the only requirement is that it preserve

the mean value. A computationally e�cient approach for the projection P

is to simply truncate the higher-order terms in polynomial representation of

u
p
hjK. To enforce the conservativity condition (7.16), the bilinear part of uphjK is

augmented by the mean value of the truncated higher-order terms. To describe

this procedure, the approximate solution is decomposed into its linear and

higher-order contributions:

u
p

hjK = ulinear + uh:o:

=
4X
i=1

ui�i(x; y) +

(p
K
+1)2X
i=5

ai�i(x; y) (7.17)

where �i(x; y); i = 1; : : : ; 4 are the standard bilinear shape functions and

ui; i = 1; : : : ; 4 are the solution values at the nodes of the element. The
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element mean value is thus

�uK = �ulinear + �uh:o:

=
4X
i=1

ui ��i +

(p
K
+1)2X
i=5

ai ��i (7.18)

Let unewi denote the degrees-of-freedom of P (uhjK), then its mean value

is

P (uphjK ) =
4X
i=1

unewi
��i (7:19)

The conservativity condition (7.16) and the property of the bilinear shape func-

tions that
P4
i=1

��i = 1 imply that

4X
i=1

unewi
��i =

4X
i=1

ui ��i + �uh:o:

=
4X
i=1

ui ��i + (
4X
i=1

��i)�uh:o:

=
4X
i=1

(ui + �uh:o:)��i (7.20)

=) unewi = ui + �uh:o:; i = 1; : : : ; 4

Combining the de�nition of �uh:o: in (7.18) with (7.20) results in the �nal

de�nition for P (uphjK ):

P (uphjK ) =
4X
i=1

(ui +

(p
K
+1)2X

j=5

aj ��j)�i(x; y) (7:21)

7.3.2 The Local Projection �K : Q1(K)! Q1(K)

Construction of a projection which results in a function satisfying (7.15) for

every point in the element is straightforward for linear elements since the max-

imum solution values within the element occur at the nodes (vertices) of the

element.
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Let pi; i = 1; � � � ; 4 denote the degrees of freedom associated with the

projected solution,

�KP (u
p
hjK ) =

4X
i=1

�i(x; y)pi (7:22)

which can be expressed in terms of the mean value and the deviation from the

mean,

�KP (u
p
hjK ) = �KP (u

p
hjK ) + g�KP (u

p
hjK ) (7:23)

Evaluating (7.23) at the nodes yields a direct expression for the degrees

of freedom of the projected solution,

pi = �KP (u
p
hjK ) + g�KP (u

p
hjK )(xKi ; yKi ) ; i = 1; � � � ; 4 (7:24)

where (xKi ; y
K
i ) ; i = 1; � � � ; 4 are the coordinates of the element vertices. All

that remains to de�ne the local projection, �K, is to select values for

g�KP (u
p
hjK )(xKi ; yKi ) i = 1; � � � ; 4

so that the monotonicity conditions (7.15) and the conservativity condition

(7.16) are satis�ed. To simplify the notation, let

~pi = g�KP (u
p
hjK )(xKi ; yKi ) = �KP (u

p
hjK )(xKi ; yKi )��KP (u

p
hjK )

~ui = ~uK(x
K
i ; y

K
i ) = u

p
hjK (xKi ; yKi )� �uK ; i = 1; � � � ; 4

denote the deviation of the projected solution and the actual solution from the

mean value, respectively. A strategy similar to Barth [5] is used to select ~pi so

that (7.15) is satis�ed:

~pi =
�
min(~ui;max(�uK; �uKe; e 2 @K)) if ~ui � 0
max(~ui;min(�uK; �uKe; e 2 @K)) if ~ui < 0

(7:25)

Note that (7.25) represents the minimum modi�cation to uphjK that satis�es

(7.15) without regard for the conservativity condition.
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The conservativity condition is enforced by appropriate scaling of ~pi.

From (7.23) we have

�KP (u
p
hjK ) =

4X
i=1

��i pi

=
4X
i=1

��i(�KP (u
p
hjK ) + ~pi) from (7:24) (7.26)

and since �KP (u
p

hjK ) is a constant and
P4
i=1

��i = 1, (7.26) becomes

4X
i=1

��i ~pi = 0 (7:27)

To enforce conservativity, the appropriate ~pi are scaled by a factor � < 1 which

is is a ratio of the positive and negative parts of (7.27). This scaling process is

described by the following algorithm:

Let S+ = fi : ~pi � 0g

S� = fi : ~pi < 0g

P+ =
X
i2S+

��i ~pi

P� =
X
i2S�

��i ~pi

If P� < P+; then � =
P�

P+
and ~pi 7! �~pi ; 8i 2 S+

If P� > P+; then � =
P+

P� and ~pi 7! �~pi ; 8i 2 S� (7.28)

If P� = 0 or P+ = 0; then ~pi = 0; i = 1; : : : ; 4

This completes the de�nition of the projection for p = 1 elements since from

(7.24), (7.16), and (7.23) we get

�KP (u
p
hjK ) =

4X
i=1

�i(x; y) �uK + ~pi (7:29)
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7.4 Numerical Results for Burger's Equation

The performance of the discontinuous Galerkin method is investigated by solv-

ing the two-dimensional Burger's equation with periodic initial and boundary

conditions:

ut + f(u)x + g(u)y = 0 (x; y) 2 (�1; 1) � (�1; 1); t > 0

where f(u) = g(u) =
u2

2

u(x; y; 0) =
1

4
+
1

2
sin�(x+ y)

u(1; y) = u(�1; y)

u(x; 1) = u(x;�1) (7.30)

The solution to (7.30) is smooth until the time t = 0:45 when two shocks

form diagonally to the domain boundaries. The exact solution at t = 0:1 and

t = 0:45 are shown in Figure 7.1 where a 40 � 40 mesh is used to generate

the contours and 100 points are used to generate the distributions along the

domain diagonal. The exact solution for t > 0 is computed using the method

of characteristics.

The time accurate solutions presented in this chapter were obtained

using the Godunov numerical 
ux function [23]

h
K;e
(u1; u2) =

(
minu2[u1;u2] q(u) � nK;e

for u1 < u2
maxu2[u2;u1] q(u) � nK;e

for u1 > u2
(7:31)

and the Runge-Kutta time marching schemes de�ned in Table 7.1 using p + 1

intermediate steps for elements with a polynomial approximation of degree p.

To assess the accuracy of the method, the error in the approximate solution,

e = u�uph, is computed in the L1 and the L1 norms. The L1 norm is a global
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Figure 7.1: Evolution of the exact solution to (7.30).
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measure of the error and is de�ned as

jju� uphjjL1(
) =
Z


ju� uphj dx dy

=
X
K2Ph

Z
K
ju� uphj dx dy (7.32)

The element integrals in (7.32) are evaluated using numerical quadrature with

nine integration points in each local coordinate direction to accurately compute

the error near discontinuities. The L1 norm is a local measure of the error and

is de�ned as

jju� uphjjL1(
) = max
(x;y)2


ju� uphj

= max
K2Ph

"
max

(x;y)2K
ju� uphjKj

#
� max

(xi;yj)2K
i;j=1;:::;9

ju(xi; yj)� uphjK(xi; yj)j (7.33)

where (xi; yj); i; j = 1; : : : ; 9 are the coordinates of the integration points in

element K.

Numerical results are shown in the form of distributions of the solution

along the domain diagonal. The actual discontinuous solution is displayed by

subdividing each element into 10 smaller elements, evaluating the approximate

solution at the vertices of the sub-elements, and assuming a linear distribution

of the solution in each sub-element. Discontinuities in the solution at element

interfaces appear as vertical lines connecting two circles in the distribution

plots. These circles represent the solution values at the vertices of an element.

Since the solution is periodic, only one period is shown in the distribution plots.

To assess the accuracy of the Runge-Kutta discontinuous Galerkin method

without the local projection, results are presented at t = 0:1 when the solu-

tion to (7.30) is smooth. The solution obtained on an 8 � 8 mesh of uniform
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p�elements (p = 1; � � � ; 4) is shown in Figure 7.2. Note that the approximate

solution is discontinuous at element interfaces even though the exact solution

is smooth. These discontinuites are small, O(h(p+1)), and thus decrease as the

mesh is re�ned or as p
K
is increased.

The rate of convergence of the error in the L1-norm for a sequence of

uniform mesh re�nements is shown graphically in Figure 7.3. Each line on the

graph represents a sequence of meshes with a �xed element polynomial degree

p. The slope of the lines on the log-log scale is nearly p+1 indicating that the

error decreases at the rate of hp+1 as the mesh size h decreases. In other words,

the method is (p+ 1)-order accurate.

A graph of the error as a function of the total number of unknowns

in the solution, Figure 7.4, shows that the number of unknowns required to

achieve a certain level of accuracy decreases by an order of magnitude for each

increase in p. Figure 7.4 also shows that for a �xed problem size, more accurate

solutions are obtained using higher-order elements.

As the solution evolves, the local projection is required to control oscil-

lations in the solution. To demonstrate the e�ectiveness of the projection at

controlling oscillations, the solution obtained at t = 0:45 on a uniform 8 � 8

and 40 � 40 element mesh with p = 1 and p = 2 is shown in Figure 7.5. The

solutions obtained for p = 3 elements in indistinguishable from the p = 2 so-

lution, and is therefore, not shown. In all cases, the projection is extremely

e�ective at controlling oscillations at the shock.

The error in the solution in smooth regions, computed on a subdomain

which excludes the shock, is summarized in Figure 7.6. Each line on the graph

represents a sequence of meshes with uniform p-elements. Note that the slope
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Figure 7.2: Discontinuous Galerkin solution to (7.30) at t = 0:1. Solutions
obtained on an 8� 8 mesh of uniform p-elements.
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Figure 7.5: Discontinuous Galerkin solutions at t = 0:45.
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of the lines is p + 1 indicating that the order of accuracy of the method is

preserved in smooth regions.



Chapter 8

Concluding Remarks

8.1 Summary

The development of a parallel hp-adaptive discontinuous Galerkin method for

hyperbolic conservation laws is presented in this work. A priori error estimates

are derived for a model class of linear hyperbolic conservation laws. These

estimates are obtained using a new mesh-dependent norm that re
ects the

dependence of the approximate solution on the local element size and the local

order of approximation. The results generalize and extend previous results

on mesh-dependent norms to hp-version �nite elements and to discontinuous

Galerkin methods.

A posteriori error estimates which provide bounds on the actual error

are developed in this work. The a priori and a posteriori estimates play an

essential role in the development of an hp-adaptive strategy designed to deliver

solutions to a speci�ed error level in an e�cient way. A generalization of

the three-step hp-adaptive strategy is developed using the error estimates to

provide for detection of discontinuities in the solution and local h-adaptivity

when appropriate.

Numerical experiments verify the a priori estimates and demonstrate the

e�ectiveness of the a posteriori estimates in providing reliable estimates of the

120
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actual error in the numerical solution. The numerical examples also illustrate

the ability of the hp-adaptive strategy to provide super-linear convergence rates

with respect to the number of unknowns in the problem, even for discontinuous

solutions.

A parallel implementation of the discontinuous Galerkin methods is pre-

sented which takes full advantage of the local character of the method and

results in nearly optimal speedups on hp-meshes.

Extensions of the discontinuous Galerkin methods to nonlinear hyper-

bolic conservation laws are also presented. Numerical results illustrate the

e�ectiveness of the method at delivering high-order accuracy in smooth re-

gions. A local projection, designed to control nonlinear stability, is shown to

eliminate oscillations and provide high resolution of discontinuities.

8.2 Conclusions and Future Work

The study reported in this dissertation represents a signi�cant departure from

conventional studies on the numerical solution of hyperbolic problems. The aim

was to produce new schemes which deliver very high accuracies, were readily

parallelizable, were based on rigorous mathematical foundations, and which

were capable of delivering exponential rates of convergence. All of these goals

were accomplished for a model class of linear hyperbolic conservation laws in

two-dimensions, and encouraging results were obtained on extensions to model

nonlinear problems.

Among the major conclusions drawn from this work are the following:

1. The machinery of elliptic approximation theory can be extended to hp-
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�nite element approximations of hyperbolic equations using the notion of

discontinuous Galerkin methods; this is made possible by the introduction

of special bilinear and linear forms which depend upon mesh parameters,

the mesh size h
K
of a cellK in the mesh and the spectral order p

K
of the

shape functions characterizing local approximations over the cell.

2. The use of the new mesh-dependent norms makes it possible to derive, for

the �rst time, a priori error estimates for non-uniform hp-approximations

of linear hyperbolic problems; these estimates are quasi-optimal, and the

estimated rates of convergence are fully con�rmed by numerous numerical

experiments.

3. Exponential and/or super-linear rates of convergence are obtained, even

for solutions with very low regularity; this justi�es the use of hp-methods

and demonstrates their superiority over conventional methods for a model

class of problems.

4. Rigorous a posteriori error estimates are derived using a new version of

the element residual method; these estimates provide computable mea-

sures of local (elementwise) error with remarkable accuracy and provide

a reasonable basis for assessing solution quality and for adaptivity.

5. Equipped with both a priori and a posteriori estimates; an e�ective hp-

adaptive strategy is developed which can be parallelized and generally

gives a good hp-mesh in three or four steps; this work represents an

extension and generalization of the three-step scheme for non-uniform

hp-meshes; it exploits the unique feature of the a priori estimates for
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hyperbolic problems, in particular, the loss of the rate of convergence in

the vicinity of a discontinuity.

6. The adaptive scheme developed here is quite robust and e�ective for the

example problems tested; results suggest that it is possible to specify

target global error in an appropriate norm and to then reach that error

quite accurately in three or four steps.

7. New versions of load-balancing schemes based on recursive bisection pro-

vide for a domain decomposition well-suited for hp-version disontinuous

Galerkin methods; the schemes, which are in an early stage of develop-

ment, still provide a reasonably balanced computation when implemented

on a 16-processor Intel iPSC 860 computer. Near linear speedups were

realized on a model problem.

8. Extensions of the methodologies to nonlinear problems appear to be pos-

sible; preliminary studies suggest that with a proper projection to control

oscillations near discontinuities, very high accuracies can be obtained with

hp-schemes using the discontinuous Galerkin method; while much work

remains to be done in this area, the high convergence rates and accura-

cies observed in the numerical experiments on nonlinear problems suggest

that further studies in this area may be very fruitful.
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